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Abstract 
 
The concept of emergent “levels” (i.e. levels that arise from interactions of objects at 
lower levels) is fundamental to scientific theory. In this paper, we argue for an expanded 
role for this concept of “levels” in the study of science. We show that confusion of levels 
(and “slippage” between levels) is the source of many deep misunderstandings about 
patterns and phenomena in the world. These misunderstandings are evidenced not only in 
students’ difficulties in the formal study of science but also in their misconceptions about 
experiences in their everyday lives. The StarLogo modeling language is designed as a 
medium for students to build models of multi-leveled phenomena and through these 
constructions explore the concept of levels. We describe several case studies of students 
working in StarLogo. The cases illustrate students’ difficulties with the concept of levels, 
and how they can begin to develop richer understandings.  
 

Introduction 
 
Two high-school students were writing a computer program to simulate the flow of 
traffic on a highway. They began by writing some simple rules for each car: Each car 
would accelerate if it didn’t see any other cars ahead of it, and it would slow down if it 
saw another car close ahead. They started the program running, and observed the patterns 
of traffic flow. On the screen, a traffic jam formed. They continued to watch and–much to 
their surprise–the jam started drifting backward along the highway. “What’s going on?” 
said one of the students. “The cars are going forward, how can the jam be moving 
backward?” 
 
This type of confusion is not unique to students modeling traffic jams. It arises in many 
different domains, among many different types of learners. At its core, it is a confusion of 
levels. By levels, we do not mean a classic hierarchy or chain of command, like the levels 
of officers in the army. Rather, we are talking about the levels of description that can be 
used to characterize a system with lots of interacting parts. This notion of levels is useful 
for understanding a wide range of phenomena in the world. Although we view the idea of 
levels as central to the study and practice of science, it is often missing in the discourse 
among scientists, and even less common in science classrooms or in the culture at large. 
                                                 
* This work is a collaboration. There is no primary author. 

 



 
Why were the students surprised by the backward-moving jam? As we see it, the students 
viewed the jam as a simple collection of cars. If the cars are moving forward, the 
collection must do the same. But traffic jams are not simple collections of cars. For one 
thing, the constituent parts of the jam are constantly changing over time (cars move in 
and out of the jam). Moreover, the jam acts as an “object” in its own right, with its own 
rules of motion, different from the cars’ rules. True to the old saying, the whole is more 
(or, at least, different) than the sum of the parts.  
 
In the study of science, these ideas commonly come to the surface when studying waves. 
In an ocean wave, it is the energy that moves, not the water molecules. Similarly, with a 
wave travelling along a rope: pieces of the rope move up and down, but the wave moves 
along the length of the rope. Traffic jams can be viewed as another type of wave, with 
density of cars analogous to the height of an ocean wave. In all of these waves, the 
motion of the wave is very different from the motion of the constituent parts. 
 
These issues are confusing not only to high-school students. We showed the traffic 
program to two visiting computer scientists. They were not at all surprised that the traffic 
jams were moving backwards. They were well aware of that phenomenon. But then one 
of the researchers said: "You know, I've heard that's why there are so many accidents on 
the freeways in Los Angeles. The traffic jams are moving backwards and the cars are 
rushing forward, so there are lots of accidents." The other researcher thought for a 
moment, then replied: "Wait a minute. Cars crash into other cars, not into traffic jams." In 
short, he believed that the first researcher had confused levels, mixing cars and jams 
inappropriately. The two researchers then spent half an hour trying to sort out the 
problem. It is an indication of the underdeveloped state of notion of “levels” in our 
culture that two sophisticated computer scientists needed to spend half an hour trying to 
understand the behavior of a ten-line computer program written by high-school students. 
 
In this paper, we argue for an expanded role for the concept of “levels” in the study of 
science. We view confusion of levels (and “slippage” between levels) as the source of 
many of people’s deep misunderstandings about patterns and phenomena in the world. 
These misunderstandings are evidenced not only in students’ difficulties in the formal 
study of science but also in their misconception about experiences in their everyday lives. 
Our goal is to help people develop better intuitions about levels–and a better sense of 
which levels are appropriate for which purposes. We believe that a better understanding 
of levels will enable people to construct causal explanations of a wide range of 
phenomena, and provide them with a framework that is useful across a wide range of 
disciplines. We see the concept of levels as a cornerstone to creating a more 
interdisciplinary approach to science–and, even more broadly, as a unifying concept to 
connect different domains of knowledge in the humanities and social sciences as well as 
the natural sciences.  
 
An understanding of levels is becoming even more important with the increased presence 
of the computer in our culture. For one thing, people can use computers as tools for 
exploring the idea of levels–as in the case of the two high-school students simulating 
traffic patterns. Moreover, computers themselves are best understood by thinking in 
terms of levels. At one level, the operation of a computer program can be described in 



terms of movement of electrons; at another level, in terms of gates and transistors; at 
another level, in terms of assembly-language instructions; at yet another level, in terms of 
general algorithms and “intentions.” Even more importantly, these computer-inspired 
ideas about levels are providing new metaphors and models for understanding many 
other complex systems in the world, offering a productive framework for thinking about 
some of the most difficult issues of science, from the evolution of species to the workings 
of the mind. 
 
We live in an increasingly interconnected world. Economic actions in one country can 
instantly affect markets on the other side of the world. There are analogous ecological 
connections: smokestacks in one country can decimate rainforests on another continent. 
Traditionally, science has tended to study phenomena in isolation. Today, there is a 
greater need to develop systemic approaches for designing and understanding the world. 
A deep understanding of the concept of levels is crucial to developing such systemic 
approaches. 
 
In the next section, we probe more deeply into the notion of levels. The rest of the paper 
revolves around three informal case studies of students and teachers exploring the 
concept of levels in the context of building computer-based models of complex systems. 
The studies are intended to probe how people think about levels, and to illustrate new 
tools and activities that can help people think about levels in new ways. Through these 
studies, we demonstrate the importance of “level thinking” for understanding a wide 
range of phenomena, and we suggest new pedagogical strategies for introducing these 
ideas to students. 
  

What are Levels Anyway?: Leveling about Levels 
 
People often talk about “levels” in everyday conversation, but they typically mean 
something quite different from the ideas that we are discussing in this paper. Indeed, 
“levels” can have many different meanings. In this section, we aim to distinguish 
between these different senses of levels, and we argue that these multiple interpretations 
contribute to people’s misunderstandings about levels. 
 
Often, people think of levels in terms of hierarchies of control. In the army, the general is 
at the top level of the hierarchy, the private is at the bottom level, with sergeants, 
lieutenants, and colonels in between. Commands flow down from higher levels to lower 
levels. Similarly, in most corporations, the chief executive is at the top level, then the 
president, then vice presidents, and so on. Modern management structures are moving 
away from strict hierarchies, but the traditional organization chart still dominates the way 
many people think about levels. So we call this approach to thinking about levels the 
“organization-chart view.” 
 
A very different meaning of levels, which we call the “container view,” is based on the 
idea of parts and wholes. For example, we can view units of time in terms of levels. A 
day is a lower level than a week, which is a lower level than a month. The container view 
differs from the organization-chart view in that the lower-level elements are parts of the 
higher-level elements: A month is part of a year, but a sergeant is not part of a general. 



 
In this paper, we are focusing on yet another meaning of levels, which we call the 
“emergent view” of levels. Our focus is on levels that arise from interactions of objects at 
lower levels–like the traffic jam that emerged from the interactions among the cars. 
These levels might seem similar to the part/whole levels: just as a year is made up of 
months, traffic jams are made up of cars. But the jam/car relationship is different in some 
very important ways. For one thing, the composition of the jam keeps changing; some 
cars leave the jam and other cars enter it. Moreover, the jam arises from interactions 
among the cars; it is not just a simple accumulation of cars. Months do not interact to 
form a year; they simply accumulate or “add up.”1 A year can be viewed, essentially, as a 
long month. But a traffic jam is not just a big car. It is qualitatively different. And that is 
what led to the high-school students’ surprise: the jam behaved very differently from the 
cars, moving backwards while the cars within it moved forward. 
 
Many systems in the world work somewhat like traffic jams. Once sensitized to these 
ideas, we see “jams” wherever we look. We continue to recognize our friends, even 
though their cells are constantly entering and leaving the “jams” of their bodies. 
Similarly, we continue to identify companies, countries, and other organizations even 
though the people within them are constantly changing over time. From this perspective, 
we can think of the levels within a corporate organization in a new way. Rather than 
focusing on CEOs, managers, and assembly-line workers within a hierarchy (as in the 
organization-chart view), we can think about corporate divisions and the employees 
within them. As any good manager can tell you, the performance of a corporate division 
is not a simple combination of the actions of the employees within it (nor a direct result 
of the person in charge); rather, it depends on the complex web of relationships and 
interactions among all of the employees.2 
 
This notion of levels is central to understanding the emerging “sciences of complexity”–
the investigation of how complex phenomena can arise from simple components and 
simple interactions. New research projects on chaos, self-organization, adaptive systems, 
nonlinear dynamics, and artificial life are all part of this growing interest in complex 
systems. The interest has spread from the scientific community to popular culture, with 
the publication of general-interest books about research into complex systems (e.g., 
Gleick, 1987; Waldrop, 1992; Gell-Mann, 1994; Kelly, 1994; Roetzheim, 1994; Holland, 
1995; Kauffman, 1995). 
 
Research into complex systems touches on some of the deepest issues in science and 
philosophy–order vs. chaos, randomness vs. determinacy, analysis vs. synthesis. In the 
minds of many, the study of complexity is not just a new science, but a new way of 
thinking about all science, a fundamental shift from the paradigms that have dominated 
scientific thinking for the past 300 years. Although complexity researchers have not 
focused extensively on the notion of levels, we view levels as one of the central ideas of 
                                                 
1 Of course, the way we experience a year is not just the accumulation of our experiences of the months. 
But the year as a unit of time is a simple accumulation of months. 
2 This view of corporate organization parallels recent thinking in management science, where the emphasis 
has shifted away from top-down control toward more network-based or participatory models in which 
information and decision-making flows in many different directions (Senge, 1990). 



the sciences of complexity–and especially important in helping nonexperts gain an 
understanding of the sciences of complexity. By foregrounding the notion of levels, we 
hope to enable people to transform their view of systems, using levels as a framework for 
seeing systems from multiple perspectives. We expect that this transformation will enable 
people to develop better causal accounts of the interactions and relationships among 
elements of the systems they encounter. 
 
Indeed, the notion of levels is a powerful tool for understanding some of the most long-
standing issues in science. Some of the greatest controversies and advances in the field of 
evolutionary biology hinge on a question of levels–for example, is it appropriate to think 
about variation and selection at the level of the gene or the organism or the species 
(Dawkins, 1976; Dennett, 1995)? Similarly, many current investigations into the nature 
of mind focus on the idea of levels. Minsky (1987) argues that mind arises from the 
interactions among a complex society of agents that organize themselves into a variety of 
structures. Hofstadter (1979) compares the mind to an ant colony; just as the behavior of 
a colony arises from interactions of individual ants, mind arises from the interactions 
among “cognitive ants.”  
 
There is no doubt that people have difficulty understanding this emergent sense of levels 
(Resnick, 1994; Wilensky, 1995b). But there are reasons to be optimistic about the 
possibilities for helping people overcome their confusions about levels. There are some 
indications that people can become engaged with the notion of emergent levels–much 
more than they would with other difficult concept. In our own research in participatory 
simulations (Resnick & Wilensky, 1997), we have engaged people of all ages in playful 
explorations of multi-level thinking. On a broader scale, many people have experienced 
the idea of emergent levels directly by participating in “human waves” at sports stadiums. 
Individual people simply stand up and sit down, but the wave moves around the stadium. 
Why has this activity become so popular? Despite (or, perhaps, because of) the deep 
confusion that is associated with the notion of levels, people seem to take particular 
delight in “playing with” the idea of levels. There is something almost magical in the way 
behaviors at one level arise out of very different behaviors at another level. 
 

Leveling Stories 
 
In this section, we explore the notion of emergent levels through a set of case studies or 
“stories,” illustrating how people have difficulty with this concept, and how they can 
begin to develop richer understandings. These stories draw largely on experiences with 
StarLogo 3(Resnick, 1994; Wilensky, 1995), a computer modeling environment designed 
explicitly for exploring systems with multiple interacting objects. StarLogo is an 
extension of the computer language Logo, and builds on the Logo metaphor of a “turtle.” 
In traditional Logo, students create graphic images by giving commands to the turtle. In 
StarLogo, students can give commands to hundreds or thousands of turtles, telling the 
turtles how they should move and interact with one another. In StarLogo, turtles are not 
necessarily turtles any more–students can use StarLogo turtles to represent all different 
types of “agents,” such as cars in a traffic jam or molecules in a gas.  

                                                 
3 The StarLogo modeling language can be downloaded from http://education.mit.edu/starlogo 



 
StarLogo users can also program the behavior of the environment in which the turtles 
live. The environment is represented as a grid of small squares called “patches.” For 
example, a patch might represent a piece of the road in the traffic simulation, and it 
would keep track of information such as the amount of oil spilled on the road. Like the 
turtles, the patches are “computationally active”: students can write rules for the patches 
(for example, telling the patches what to do if a car passes by). In computer-science 
terms, StarLogo can be viewed as a collection of agents moving on top of (and 
interacting with) a two-dimensional cellular automata. 
 
We have used StarLogo as a platform for supporting student explorations (and studying 
student thinking) in several settings, generally at secondary schools and universities. 
There are two general ways in which we engage students in using StarLogo. In some 
cases, students use StarLogo to build models “from scratch”–that is, they choose 
phenomena of interest to them (such as the formation of traffic jams) and write StarLogo 
programs to model (and explore the workings of) the phenomena. In other cases, we 
introduce a pre-built StarLogo model and engage students in discussing the workings of 
the model–and then invite them to modify or extend the model to deepen their 
understanding of it. In all cases, we work closely with individual students to gain a 
deeper understanding of how students think about complex phenomena–and how their 
thinking evolves as they build and explore models of such phenomena. 
 
Below, we present three case studies of student experiences with StarLogo. The cases 
examine how students developed an understanding of emergent levels, and how this 
understanding helped them gain insight into the phenomena they were investigating. 
Each story focuses on a different scientific domain and each highlights a different theme. 
The first, focusing on the behavior of slime-mold cells, introduces the basic scientific and 
philosophical issues related to levels. The second, focusing on the behavior of gas 
particles in a box, discusses the pedagogical benefits of introducing the concept of levels 
into science education. The third, focusing on the behavior of simple predator-prey 
ecosystems, analyzes how different computer-based modeling tools influence the ways 
students think about levels. 
 

Slime 
 
We have found that thinking about the life cycle of slime mold is an effective entry point 
for introducing students to the concept of levels. Slime mold is hardly the most 
glamorous of creatures, but it is surely one of the most strange and intriguing. As long as 
food is plentiful, slime-mold cells exist independently as tiny amoebas. They move 
around, feed on bacteria in the environment, and reproduce simply by dividing into two. 
But when food becomes scarce, the slime-mold behavior changes dramatically. The 
slime-mold cells stop reproducing and move towards one another, forming a cluster 
(called a “pseudoplasmodium”) with tens of thousands of cells. 
 
At this point, the slime-mold cells start acting as a unified whole. Rather than lots of 
unicellular creatures, they act as a single multicellular creature. It changes shape and 
begins crawling, seeking a more favorable environment. When it finds a spot to its liking, 



it differentiates into a stalk supporting a round mass of spores. These spores ultimately 
detach and spread throughout the new environment, starting a new cycle as a collection 
of slime-mold cells. (See figure 1, reproduced from Prigogine and Stengers (1984)). 
 

Figure 1

 
Figure 1: Life cycle of slime-mold cells 

 
To engage students in exploring the behavior of slime mold–and, more broadly, 
exploring the nature of levels–we wrote a StarLogo program that models the slime-mold 
aggregation process. We were not interested in simulating every detail of the actual 
slime-mold mechanism. Our goal was to capture the essence of the aggregation process 
with the simplest mechanism possible. Our StarLogo program is based on a set of simple 
rules. Each turtle is controlled by four rules: one makes the turtle move, a second adds a 
little randomness to the turtle’s movements, a third makes the turtle emit a chemical 
pheromone, and a fourth makes the turtle “sniff” for the pheromone and turn in the 
direction where the chemical is strongest (that is, follow the gradient of the pheromone). 
Meanwhile, each patch is controlled by two rules: one to make the pheromone in the 
patch evaporate, and another to diffuse the pheromone to neighboring patches. Each rule 
is very simple, requiring at most two lines of StarLogo code. 
 
If we start the simulation with a small number of turtles, not much happens. We see faint 
green trails of pheromone behind each turtle. But these trails quickly dim as the 
pheromone evaporates and diffuses. Sometimes a turtle will follow another turtle for a 
short while, but it quickly loses the trail. Overall, the screen has a faint green aura, 
indicating a low level of pheromone everywhere, but no bright green areas. The turtles 
seem to wander aimlessly, looking somewhat like molecules in a gas. 
 
But if we add enough turtles to the simulation, the behavior changes dramatically. With 
lots of turtles, there is a better chance that a few turtles will wander near one another. 
When that happens, the turtles collectively drop a fair amount of pheromone, creating a 
sort of pheromone “puddle” (shown as a bright green blob on the display). The turtles in 
the puddle, by following the pheromone gradient, are likely to stay within the puddle–and 
drop even more pheromone there, making the puddle even bigger and more “powerful.” 
And as the puddle expands, more turtles are likely to “sense” it and seek it out–and drop 
even more pheromone. The result is a self-reinforcing positive feedback loop: (1) the 



more pheromone in the puddle, the more turtles it attracts, and (2) the more turtles 
attracted to the puddle, the more pheromone they drop in the puddle.  
 
With enough turtles, this same process can play out in many locations, resulting in 
turtle/pheromone clusters all over the computer screen. Through the positive-feedback 
mechanism, the clusters tend to grow larger and larger (figure 2). What’s to stop the 
clusters from growing forever? The positive-feedback loop is balanced by a negative-
feedback process: as the clusters become bigger, there are fewer “free” turtles wandering 
around the world, depriving the positive-feedback process of one of the “raw materials” 
that it needs to keep going. For the clusters to keep growing, the system would need a 
never-ending supply of new turtles. 
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Figure 2: 500 iterations with 1000 slime-mold cells 
 
As students have experimented with this model (adjusting parameters such as number of 
turtles and pheromone evaporation rate, and in some cases adding new features to the 
model), we have observed their engagement with several important issues related to the 
concept of levels: 
 
What is an object?  
 
The life cycle of slime mold touches on one of the most fundamental issues that arises 
when thinking about levels: What is an object anyway? Or, in other words, when is 
something a “thing”? Is the slime mold a society of thousands of separate objects that 
sometimes cooperate? Or is it a single object that divides into separate pieces under 
certain conditions? In short, should we refer to slime mold as “it” or “they”? 
 



Languages make a fundamental distinction between the singular and the plural. Indeed, in 
writing the above description, we needed to decide whether to use the verb “is” or “are” 
when referring to slime mold. But, as the case of the slime mold shows, the distinction 
between singular and plural is not as sharp as might first appear. As mentioned earlier, 
leading cognitive-science researchers, such as Papert and Minsky (1987), have proposed 
models of mind (and self) as composed of societies of interacting entities. In each of our 
lives, one of our most fundamental realities is the experience of ourselves (and our 
selves) as singular entities. Our language, typified by the use of the singular pronoun “I,” 
reflects (and, perhaps, reinforces) this view. But the new distributed models of mind 
require a new stance in thinking about the “self” as sometimes an “I” and sometimes a 
“we.” Similarly, new ecological models encourage us to sometimes view ecosystems as a 
collection of interacting organisms, but sometimes as an integrated whole (Lovelock, 
1979).  
 
In our view, the very question of “objectness” becomes a question of “levels.” Objects 
that are viewed as singular at one level are best viewed as plural at another level. The 
ability to shift levels, viewing the same object as either singular or plural, depending on 
the situation, is a prerequisite for building deep, scientific understandings of phenomena. 
There is no “right answer” to the question of whether slime mold is (are?) singular or 
plural. Whether it is best to think about slime mold as singular or plural depends on what 
question you are trying to answer–and which stance (that is, which level of description) 
provides a better explanatory account of the question. 
 
Emergent objects 
 
When students began experimenting with our StarLogo slime-mold model, many of them 
did think in terms of levels–but in the organization-chart sense. When we asked students 
how they might program the slime-mold cells to aggregate into clusters, most of the 
students immediately responded that they would put one of the slime-mold cells in 
charge, and it would “give orders” to the other cells, instructing them where to go. 
 
It’s not surprising that students had this organization-chart perspective. In fact, the 
process through which slime-mold cells aggregate into a single multicellular creature has 
been a subject of scientific debate (Keller, 1983). For many years, scientists believed that 
the aggregation process was coordinated by specialized slime-mold cells, known as 
“founder” or “pacemaker” cells (which act somewhat like chief executives in an 
organization). According to this theory, each pacemaker cell sends out a chemical signal, 
telling other slime-mold cells to gather around it, resulting in a cluster. In 1970, Keller 
and Segel (1970) proposed an alternative model, showing how slime-mold cells can 
aggregate without any specialized cells. Nevertheless, for the following decade, other 
researchers continued to assume that special pacemaker cells were required to initiate the 
aggregation process. As Keller (1985) writes, with an air of disbelief: “The pacemaker 
view was embraced with a degree of enthusiasm that suggests that this question was in 
some sense foreclosed.” It wasn’t until the early 1980’s, based on further research by 
Cohen and Hagan (1981), that researchers began to accept the idea of aggregation among 
homogeneous cells, without any pacemaker.  
 



The decade-long resistance serves as some indication of the strength of what we call the 
“centralized mindset” (Resnick, 1994). When people see patterns in the world, then tend 
to assume centralized control, even if it doesn’t exist. And when people try to create 
structures in the world (such as organizations or technological artifacts), they often 
impose centralized control even if it is not needed. People have difficulty recognizing 
that objects (such as slime-mold clusters) can arise from simple, decentralized 
interactions, rather than centralized, top-down control. So as students worked on the 
StarLogo model, it seemed “natural” for them to put one of the slime-mold cells in 
charge, putting the rest of the cells lower down in the “organizational chart.” 
 
Mechanisms of emergence 
 
Even when students began thinking of the StarLogo model in more decentralized ways, 
they tended to assume that each individual slime-mold cell should follow an explicit, 
deterministic set of instructions. But, in fact, the cells in our StarLogo program have a bit 
of randomness in their motion. This randomness serves one obvious purpose: it ensures 
that “free” turtles will eventually wander near some cluster. Once a free turtle wanders 
near a cluster, it senses the pheromone from the cluster, and begins to follow the gradient 
of the pheromone. At that point, the randomness might seem to play a negative role. Why 
would we want to cripple a turtle’s ability to follow the pheromone? 
 
In fact, the program would be quite boring if the turtles followed the pheromone 
perfectly. Eventually, each turtle would join a cluster. After that, not much more would 
happen. Individual clusters could never grow larger or smaller, and the number of 
clusters would never change. Although turtles would still move around within their 
clusters, the composition of each cluster would be fixed. Turtles would never leave their 
clusters. The screen would be filled with stable, unchanging green blobs (with a little 
activity inside each blob). 
 
A bit of randomness in the turtles’ movements leads to a much different dynamic. Turtles 
are not forever “bound” to the clusters they join. Sometimes, through its random motion, 
a turtle will break free of its cluster and begin wandering again. Such an escape can 
initiate a ripple effect. With one fewer turtle in the cluster, there is a little less pheromone 
in the cluster. So the cluster is a little less likely to attract new turtles, and a little more 
likely to lose some of its remaining turtles. If another turtle escapes, the cluster becomes 
even weaker, and even less likely to hold onto its remaining turtles. As a result, small 
clusters often break apart suddenly. One turtle escapes, and then another, and another, in 
rapid succession. Underlying this rapid disintegration is the same positive-feedback 
process that drives the formation of clusters–but operating in the reverse direction. 
 
So as the program proceeds, small clusters are likely to break apart, freeing turtles to join 
(and enlarge) the remaining clusters. As a result, the number of clusters tends to decline 
with time, and the number of turtles in each cluster tends to increase. As the clusters 
grow larger and larger, they become more and more stable. Turtles are less likely to 
escape. And even when an errant turtle escapes, it is less likely to set off a chain reaction 
destroying the entire cluster. 
 



At first, students had great difficulty understanding the value of randomness in the model. 
They saw randomness as something that destroys order and interferes with goals. They 
seemed to have a “deterministic mindset” (Wilensky, 1997)–in the spirit of Einstein’s 
famous, erroneous proclamation that “God doesn’t play dice.” Indeed, scientists over the 
past three centuries have struggled to accept and understand the role and value of 
probabilistic processes. It is not surprising that students working on StarLogo models 
experience the same struggles. However, as long as students hold tightly to the 
deterministic mindset, they will never develop a complete understanding of “emergent 
levels,” since they will miss the key role that randomness plays in the mechanisms of 
emergence. 
 
We believe that one of the underlying causes of the deterministic mindset is a type of 
“level confusion.” Students have a difficult time believing that randomness on one level 
(the cells) could lead to a desired behavior on another level (the formation of clusters). 
This was only one of many level confusions that we observed in student interactions with 
StarLogo models. Indeed, level confusions seem to be a fundamental obstacle to the 
understanding of a wide range of phenomena in nature and society.  
 
An example of a level confusion arose as students experimented with different “senses of 
smell” for the slime-mold cells. Some students tried to change the range of directions that 
the turtles sniff. By default, each turtle takes three sniffs in trying to follow the gradient 
of a scent: one sniff straight ahead, one sniff 45 degrees to the left of its heading, one 
sniff 45 degrees to the right of its heading. (On each sniff, the turtle senses one unit-
distance away from its current position.) What if we make the turtles take more sniffs? 
Say each turtle takes five sniffs: 90 degrees to the left, 45 degrees to the left, straight 
ahead, 45 degrees to the right, and 90 degrees to the right. Equivalently, we could think 
of this as increasing the number of noses on each turtle, so that each turtle has five noses 
instead of three noses, equally spaced at 45 degree intervals. With five noses/sniffs rather 
than three, the turtles clearly have a better sense of smell. How will this improved sense 
of smell change the dynamics of the program? Will there be more clusters or fewer? Will 
the clusters be larger or smaller?  
 
We posed this scenario to about two dozen people (including high-school students and 
MIT researchers). Interestingly, more than three-quarters of the people predicted the 
result incorrectly. Most people expected fewer and bigger clusters. In fact, the turtles 
gather into more and smaller clusters. It isn’t too surprising that many people had 
difficulty predicting what would happen. After all, the slime mold program involves 
thousands of interacting objects. It is very difficult to make predictions about such 
complex systems. So it wouldn’t be too surprising if half of the people predicted the 
result incorrectly. But it seems strange that most people predicted incorrectly. What 
underlies this false intuition? 
 
We asked people to explain their reasoning. Many people reasoned something like this: 
“The creatures are trying to get together, to combine into one big thing. If the creatures 
have a better sense of smell, they will do a better job of that. So you’ll end up with larger 
clusters.” What’s the flaw? This reasoning confuses levels and attributes inappropriate 
intentionality to the creatures. Creatures are not really trying to form large clusters; they 
are simply following a pheromone gradient. The creatures do follow the gradient more 



effectively when they have more noses. But as a result, they form smaller (not larger) 
clusters. By following the gradient effectively, the many-nosed creatures more quickly 
“find” other creatures to interact with. Giving more noses to the creatures is like giving a 
larger cross-section to particles in a physics simulation: collisions are more likely. And 
once the creatures find some others to interact with, they can form stable clusters with 
fewer partners, since each creature in the cluster stays closer to the others. The result: 
clusters are smaller, there are more of them, and they form more quickly. 
 

Gas in a Box 
 
This story focuses on how certain computational models can help students (and teachers) 
make connections between levels that aren’t readily apparent. It is a story about Harry, a 
science and mathematics teacher in the Boston public schools, who was very interested in 
the behavior of gases. He remembered from school that the energies of the particles in a 
gas form a stable distribution called a Maxwell-Boltzman distribution (see figure 3). Yet, 
he didn’t have any intuitive sense of why they might form this stable asymmetric 
distribution. Why should this pattern be common to all gases? Does it depend on initial 
conditions? On the types of particles? If you start with all of the particles exactly the 
same, would they stay that way or would they “spread apart” into this distribution? And 
why was the distribution asymmetric? If all of the particles are essentially the same, why 
should the distribution be asymmetric?  
 
 

 
 

Figure 3: Maxwell-Boltzman distribution 
(Illustration from Giancoli, 1984) 

 
 



 
To explore these questions, Harry decided to use StarLogo to build a model of gas 
particles in a box. Harry’s model displays a box with a specified number of gas particles 
randomly distributed inside it. The user can set various parameters for the particles: mass, 
speed, direction. The user can then perform “experiments” with the particles. Harry wrote 
a program to model the standard Newtonian physics of particles colliding with one 
another and with the sides of the box. As in the classical models of an ideal gas, he 
modeled the collisions as “elastic” – that is, no energy is “lost” during collisions. 
 
Harry called his program GPCEE (for Gas Particle Collision Exploration Environment), 
though other students have subsequently dubbed it “GasLab” (Wilensky, in press). 
Harry’s program was a relatively straightforward StarLogo program. At its core were 
three procedures which were executed (in parallel) by each of the particles in the box: 
 

go: the particle checked for obstacles and, if none were present, moved 
forward (an amount based on its speed variable) for one clock tick;  
 
bounce: if the particle detected a wall of the box, it would bounce off the 
wall 
 
collide: if the particle detected another particle in its vicinity, they would 
bounce off of each other like billiard balls.  

 
Harry was excited by the fact that the laws of the gas should emerge, automatically, from 
the simple rules he had written for the particles. He realized that he wouldn’t need to 
program the macro-level gas rules explicitly; they would come “for free” if he wrote the 
underlying (micro-level) particle rules correctly. He hoped to gain further confidence in 
the gas laws through this approach – seeing them as the emergent result of the laws of 
individual particles and not as some mysterious orchestrated properties of the gas. 
 
In one of his experiments, Harry created a collection of particles of equal mass, then 
initialized them to start at the same speed but moving in random directions. He wrote a 
program to monitor the average speed of the particles. He was surprised to find that the 
average speed decreased over time. He knew that the overall energy of the system should 
be constant: energy was conserved in each of the collisions. But energy is proportional to 
the mass and to the square of the velocity. The masses were constant and the overall 
energy was constant. So shouldn’t the average speed be constant?  
 
At first, he assumed there was a bug in his computer program, but he couldn’t find the 
bug. To try to get a better understanding of what was going on, he decided to color-code 
the particles according to their speed: particles are initially colored green; as they speed 
up, they get colored red; as they slow done, they get colored blue. Soon after starting the 
model running, Harry observed that there were many more blue particles than red 
particles. This color distribution gave him a concrete way of thinking about the 
asymmetric Maxwell-Boltzman distribution. He could “see” the distribution: initially all 
the particles were green, a uniform symmetric distribution, but as the model developed, 
there were increasingly more blue particles than red ones, resulting in a skewed 
asymmetric spread of the distribution. 



  

 
Figure 4: 8000 gas particles after 30 ticks 

Faster molecules are red, slower molecules are blue, 
and average molecules are green. 

 

 
Figure 5: Dynamic histogram of molecule speeds after 30 clock ticks. 

 
 

 
Figure 6: Dynamic plot of numbers of fast, slow and medium speed particles 

 
As Harry played with the model, he also gained a way of thinking about the average-
speed problem. If there are more slow (blue) particles than fast (red) ones, then the 
average speed would indeed have to drop – so this wasn’t necessarily a bug in the 
program. 
 
Even though Harry knew about the asymmetric Maxwell-Boltzman distribution, he was 
surprised to see the distribution emerge from the simple rules he had programmed. But, 
since he had programmed the rules, he gained greater faith that this stable distribution 
does indeed emerge. Harry tried several different initial conditions and all of them 
resulted in this distribution. He now believed that this distribution was not the result of a 



specific set of initial conditions, but that any gas, no matter how the particles speeds were 
initialized, would attain this stable distribution. In this way, the StarLogo model served 
as an experimental lab where the distribution could be “discovered.” This type of 
experimental lab is not easily (if at all) reproducible outside of the computer-modeling 
environment. 
 
But there remained several puzzles for Harry. Though he believed that the Maxwell-
Boltzman distribution emerged from his rules, he still did not see why they emerged. And 
he still did not understand how these observations squared with his mathematical 
knowledge – how could the average speed change when the average energy was 
constant? Harry found several solutions. Although there were many fewer red particles 
than blue ones, Harry realized that each red particle “stole” a significant amount of 
energy from the constant overall pool of energy. The reason: energy is proportional to the 
square of speed, and the red particles were high speed. So each red particle need to be 
“balanced” by more than one blue particle to keep the overall energy constant. From a 
more classical mathematical perspective, he realized the energy for the overall gas would 
remain constant if and only if the sum of the squares of the particle speeds remained 
constant. By using standard algebra, he worked out that this result was not the same as 
the sums of the speeds themselves remaining constant. 
 
The above reasoning relieved Harry’s worries about how such an asymmetric ensemble 
could be stable. But there remained the question – why would the particle speeds spread 
out from their initial uniform speed? To think about this question, Harry turned to the 
micro-level – what happens when two particles collide? Harry experimented with various 
angles for collisions between particles and observed that the average speed did not 
usually stay constant. Indeed, it remained only constant when the particles collided head-
on. The apparent symmetry of the situation was broken when the particles did not collide 
head-on – that is, when their velocities they did not have the same relative angle to the 
line that connected their centers. Harry went on to do the standard physics calculations 
that confirmed this experimental result. In a one-dimensional world, he concluded, 
average speed would stay constant; in a multi-dimensional world, particle distributions 
become non-uniform and this leads to an asymmetric distribution. 
 
Harry’s story highlights the importance of “level-headed” thinking – that is, 
understanding phenomena through a framework of levels. In his reasoning, Harry 
constantly shifted between levels. His approach was not simply “reductionist” – that is, 
he did not merely try to explain the macro-behavior in terms of the micro-rules, but 
developed explanations that flowed back and forth between the levels. He began to 
understand the Maxwell-Boltzman distribution based on his micro-analysis of two 
particles colliding. But at the same time, he gained deeper understanding the drop of 
average speed in the collision of the two particles by appealing to energy considerations 
of the ensemble – namely, high-speed particles steal too much energy from the ensemble 
(since energy is proportional to the square of the velocity) so they must be balanced by 
many more low-speed particles. Harry needed to understand both of these levels (and the 
interactions between them) in order to develop a deeper understanding of the Maxwell-
Boltzman distribution. 
 



Indeed, it is difficult to make any good sense of the notion of distribution without 
thinking in terms of levels. A distribution is a macro-level description of what emerges 
from micro-level interactions. We see this characterization of distribution as fundamental 
– but one that is generally overlooked in classroom presentation, where the micro-level 
may be quickly mentioned, but all the attention is focused on the macro properties of 
distributions (e.g., mean, variance, standard deviation...).  
 
A distribution can be seen as a new form of emergent object. In the slime mold example, 
the emergent object was spatial – that is, a spatial agglomeration of slime cells. In other 
words, there was a detectable pattern in the x-y position of the slime cells. In the gas 
particle example, the pattern is not in x-y positions of the particles, but in another 
parameter, the speeds of the particles. Because speeds unfold over time, this pattern is 
more difficult to detect, resulting in a less perceptually-obvious emergent object. Yet, 
fundamentally, the speed distribution and the slime-mold clusters are in the same 
category – emergent objects. By color-coding the particles, Harry made this speed 
distribution pattern more perceptible; the asymmetry of the color distribution leaped out 
from the screen. Harry went further and used StarLogo to create a dynamic histogram of 
particle speeds – this enabled him to see the Maxwell-Boltzman distribution unfold over 
time. 
 
Many other students and teachers have subsequently used and extended Harry’s original 
GasLab model. For example, several students added a piston to the box and designed a 
simulated pressure-meter (or barometer). They were thus able to vary the volume of the 
box and see the effect on the pressure of the gas. Other students split the box into two 
chambers and then allowed two separate gases to mix. Yet another group designed a 
virtual heater that heated and cooled the gas, then measured the effects on pressure, 
energy, and mean free path of the particles.  
 
In all of these experiments, students needed to develop a richer conception of macro-
quantities such as pressure. Typically, pressure is taught in high-school science classes as 
a “black box.” Students learn how pressure relates to other macro-quantities (such as 
volume and temperature) via “gas laws.” But they never learn the “mechanisms” 
underlying pressure. They use instruments to measure pressure, but never need to know 
how the instruments work. In working on their StarLogo gas models, students needed to 
go inside the black box – they had to understand how pressure emerged from individual 
particle interactions. The students made several tries at constructing a measure of 
pressure; they finally decided on having the sides of the box store the momentum from 
collisions with the particles. The momentum transferred to the box was their measure of 
pressure.4 
 
                                                 
4 The students’ efforts to construct a measure of pressure led some of them to wonder: Does a gas in which 
none of the particles collide with the box have pressure? In their gas-in-a-box model, it was easy to try this 
“impossible” experiment (requiring a Maxwell-like demon). They placed all the particles in the center of 
the box and let the model “go”. The resultant screen image of a supernova-like blue mass surrounded by 
green and then red outer layers, did not register any pressure using their pressure measure. Arguments 
ensued about whether their notion of pressure was thus proved inadequate. Regardless of the consistency 
of this notion with the classical notion of pressure, we would argue that the kind of thinking these students 
were doing was evidence of powerful and sophisticated physics reasoning. 



In all of these explorations, students were best able to develop a deeper understanding of 
the phenomena when they made connection between the micro- and macro- levels of the 
phenomena – that is, when they connected properties of the gas with properties and 
interactions of the individual particles. Unfortunately, most school curricula deal with 
macro- and micro- phenomena in separate classes and subjects. In the GasLab case, the 
collisions of individual particles or billiard balls are typically handled in an introductory 
physics class, while the properties of the gas as a whole are studied in chemistry. Without 
good modeling tools, it is indeed difficult to treat these two domains together – the 
mathematical apparatus for connecting them is developed in graduate classes in statistical 
mechanics. Yet, when students are deprived of these connections, they are denied access 
to the mechanisms that truly explain the macro-level phenomena that they observe in the 
world. The StarLogo modeling language enables much younger and less mathematically 
knowledgeable students to have access to explanations that connect the micro- and 
macro- levels of phenomena. 
 

Predator-Prey 
 
The way that we see the world is greatly influenced by the tools that we have at our 
disposal. In this story, we describe the use of StarLogo to make sense of the dynamics of 
predatory-prey interactions – and discuss how other tools, by focusing on different levels 
of the interaction, would lead to different ways of thinking about these phenomena. 
 
Benjamin, a student at a Boston-area high school, set out to create a StarLogo program 
that would simulate the dynamics of an ecosystem. At the core of his simulation were 
turtles and food. His basic idea was simple: turtles that eat a lot of food reproduce, and 
turtles that don’t eat enough food die. Benjamin began by making food grow randomly 
throughout the StarLogo world. (During each time step, each StarLogo patch had a 
random chance of growing some food.) Then he created some turtles. The turtles had 
very meager sensory capabilities. They could not “see” or “smell” food at a distance. 
They could sense food only when they bumped directly into it. So the turtles followed a 
very simple strategy: Wander around randomly, eating whatever food you bump into. 
 
Benjamin gave each turtle an “energy” variable. Every time a turtle took a step, its 
energy decreased a bit. Every time it ate some food, its energy increased. Then Benjamin 
added one more rule: if a turtle’s energy dipped to zero, the turtle died. With this 
program, the turtles do not reproduce. Life is a one-way street: turtles die, but no new 
turtles are born. Still, even with this simple-minded program, Benjamin found some 
surprising and interesting behaviors. 
 
Benjamin ran the program with 300 turtles. But the environment could not support that 
many turtles. There wasn’t enough food. So some turtles began to die. The turtle 
population fell rapidly at first, then it levelled out at about 150 turtles. The system 
seemed to reach a steady state with 150 turtles: the number of turtles and the density of 
food both remained roughly constant. 
 
Then Benjamin tried the same program with 1000 turtles. If there wasn’t enough food for 
300 turtles, there certainly wouldn’t be enough for 1000 turtles. So Benjamin wasn’t 



surprised when the turtle population began to fall. But he was surprised with how far the 
population fell. After a while, only 28 turtles remained. Benjamin was puzzled: “We 
started with more, why should we end up with less?” After some discussion, he realized 
what had happened. With so many turtles, the food shortage was even more critical than 
before. The result: mass starvation. Benjamin still found the behavior a bit strange: “The 
turtles have less (initial energy as a group), and less usually isn’t more.” 
 
Next, Benjamin decided to add reproduction to his model. His plan: whenever a turtle’s 
energy increases above a certain threshold, the turtle should “clone” itself, and split its 
energy with its new twin. That can be accomplished by adding another parallel process to 
the program. 
 
Benjamin assumed that the rule for cloning would somehow “balance” the rule for dying, 
leading to some sort of “equilibrium.” He explained: “Hopefully, it will balance itself out 
somehow. I mean it will. It will have to. But I don’t know what number it will balance 
out at.” After a little more thought, Benjamin suggested that the food supply might fall at 
first, but then it would rise back and become steady: “The food will go down, a lot of 
them will die, the food will go up, and it will balance out.” 
 
Benjamin started the program running. As Benjamin expected, the food supply initially 
went down and then went up. But it didn’t “balance out” as Benjamin had predicted: it 
went down and up again, and again, and again. Meanwhile, the turtle population also 
oscillated, but out of phase with the food.  
 
On each cycle, the turtles “overgrazed” the food supply, leading to a scarcity of food, and 
many of the turtles died. But then, with fewer turtles left to eat the food, the food became 
more dense. The few surviving turtles thus found a plentiful food supply, and each of 
them rapidly increased its energy. When a turtle’s energy surpassed a certain threshold, it 
cloned, increasing the turtle population. But as the population grew too high, food again 
became scarce, and the cycle started again. 
 
Visually, the oscillations were striking. Red objects (turtles) and green objects (food) 
were always intermixed, but the density of each continually changed. Initially, the screen 
was dominated by red turtles, with a sparse scattering of green food. As the density of red 
objects declined, the green objects proliferated, and the screen was soon overwhelmingly 
green. Then the process reversed: the density of red increased, with the density of green 
declined. 
 
Many other students have worked on similar predator-prey models. Another student, 
Gabrielle, worked on a similar model using wolves and sheep rather than turtles and 
food. She was curious whether the nature of the predator-prey oscillations might depend 
on the parameters of the StarLogo program. She wondered what would happen if she 
started the simulation with a very large number of sheep? She guessed that the sheep 
would then dominate the ecosystem. 
 



 
Figure 7: Wolves and Sheep 

 
When Gabrielle ran the program, she was in for a surprise: all of the sheep died. At first 
she was perplexed: she had started out with more sheep and ended up with less. We have 
seen many students become emotionally involved with the fate of the “creatures” in their 
simulations – even when the creatures are represented as mere dots of light on their 
computer screen. Often, when they see the creatures endangered by the trough of an 
oscillation, they attempt to add more of the endangered creature to ensure its survival. 
But, in this case, Gabrielle’s attempt to help the sheep had exactly the opposite effect. 
Some students devise an explanation for this seemingly paradoxical result. They realize 
that the “trough” of the oscillation must drop below zero. And once the population drops 
below zero, it can never recover. There is no peak after a negative trough. Extinction is 
forever: it is a “trapped state.” 
 
Gabrielle’s initial response is an indication of a classic level confusion: she tried to 
achieve a group-level result by focusing only on the individuals – without considering the 
interactions among them. It is as if Gabrielle assumed that each sheep had a particular 
chance of survival, and then added more sheep to increase the chances of a large group 
surviving. In this way of thinking, the chances just add up. But in fact, there is a feedback 
mechanism in the system, so that increased numbers result in reduced chances (that, in 
fact, more than compensate for the increase in numbers).  
 
The oscillating behavior in Benjamin’s and Gabrielle’s models is characteristic of all 
types of predator-prey systems. Traditionally, scientific (and educational) explorations of 
predator-prey systems are based on sets of differential equations, known as the Lotka-
Volterra equations (Lotka 1925; Volterra 1926). For example, the changes in the 
population density of the prey (n1) and the population density of the predator (n2) can be 
described with the following differential equations: 



dn1/dt = n1(b - k1n2) 

dn2/dt = n2(k2n1 - d) 

where b is the birth rate of the prey, d is the death rate of the predators, and k1 and k2 are 
constants. It is straightforward to write a computer program based on the Lotka-Volterra 
equations, computing how the population densities of the predator and prey vary with 
time (e.g., Roberts et al., 1983). 
 
This differential-equation approach is typical of the way that scientists have traditionally 
modeled and studied the behaviors of a wide range of dynamic systems (physical, 
biological, and social). Scientists typically write down sets of differential equations then 
attempt to solve them either analytically or numerically. These approaches require 
advanced mathematical training; usually, they are studied only at the university level. 
 

 
Figure 8: Oscillation in wolf (red) and sheep (blue) population 

 
The StarLogo approach to modeling systems (exemplified by Benjamin’s and Gabrielle’s 
predator-prey projects) is sharply different. StarLogo makes systems-related ideas much 
more accessible to younger students by providing them with a stronger personal 
connection to the underlying models. Traditional differential-equation approaches are 
“impersonal” in two ways. The first is obvious: they rely on abstract symbol 
manipulation (accessible only to students with advanced mathematical training). The 
second is more subtle: differential equations deal in aggregate quantities. In the Lotka-
Volterra system, for example, the differential equations describe how the overall 
populations (not the individual creatures) evolve over time. There are now some very 
good computer modeling tools – such as Stella (Roberts et al., 1983) and Model-It 
(Jackson et al., 1996) – based on differential equations. These tools eliminate the need to 
manipulate symbols, focusing on more qualitative and graphical descriptions. But they 
still rely on aggregate quantities.  
 



In StarLogo, by contrast, students think about the actions and interactions of individual 
objects or creatures. StarLogo programs describe how individual creatures (not overall 
populations) behave. Thinking in terms of individual creatures seems far more intuitive, 
particularly for the mathematically uninitiated. Students can imagine themselves as 
individual turtles/creatures and think about what they might do. In this way, StarLogo 
enables learners to “dive into” the model (Ackermann, 1996) and make use of what 
Papert (1980) calls “syntonic” knowledge about their bodies. By observing the dynamics 
at the level of the individual creatures, rather than at the aggregate level of population 
densities, students can more easily think about and understand the population oscillations 
that arise. In future versions of StarLogo, we hope to add features to enable students to 
shift perspective from a global to an individual point-of-view. 
 
We refer to StarLogo models as “true computational models,” since StarLogo uses new 
computational media in a more fundamental way than most computer-based modeling 
tools. Whereas most tools simply implement traditional mathematical models on a 
computer (e.g., numerically solving traditional differential-equation representations), 
StarLogo provides new representations that are tailored explicitly for the computer. Of 
course, differential-equation models are still very useful–and superior to StarLogo-style 
models in some contexts. But too often, scientists and educators see traditional 
differential-equation models as the only approach to modeling. As a result, many students 
(particularly students alienated by traditional classroom mathematics) view modeling as a 
difficult or uninteresting activity. What is needed is a more pluralistic approach, 
recognizing that there are many different approaches to modeling, each with its own 
strengths and weaknesses. A major challenge is to develop a better understanding of 
when to use which approach, and why. 
 

Conclusion: Reaching for Another Level 
 
In the educational community, there is growing excitement about the introduction of 
computers into the classroom. But too often, today’s computers are used simply to teach 
the same old content in a slightly new package. Overall, school curricula have been 
hardly affected by the rush of computers into classrooms. Although some educators are 
using the introduction of computers as an opportunity to rethink how students should 
learn, very few are rethinking what students should learn. 
 
This paper illustrates how computers can be used to introduce the concept of levels into 
science education. We have chosen to focus on the concept of levels since it is 
simultaneously: 
 

• critically important to the understanding of many scientific phenomena and 
many foundational philosophical questions; 
 
• greatly under-represented in today’s science-education curricula 
 
• much more easily explored and understood through the use of computational 
media than through any previous media. 

 



Although ideas related to levels have traditionally been taught only in advanced 
university courses, if at all, they touch on some of the most basic and fundamental issues 
in science and philosophy. Many scientific phenomena, from the pressure of a gas to the 
population fluctuations in an ecosystem, can best be understood through a perspective of 
levels. It is only through fluidly shifting between levels that learners can develop an 
understanding of the mechanisms underlying the patterns they see in the world – 
everything from the formation of traffic jams to the formation of slime-mold clusters. At 
the same time, the concept of levels is fundamental to developing a deep understanding 
of mind, of self, and of society.  
 
Since the concept of levels is so fundamental to scientific and mathematical 
understanding, it is curious that it has been so absent from science and mathematics 
curricula. The three cases described in this paper demonstrate how the concept of levels 
can be effectively introduced to students (and teachers) from middle school through 
college. Previous studies have found that most students see science and mathematics as a 
collection of disconnected facts and ideas. In our research, we have found that the 
concept of levels provides students with a more unified framework for thinking about 
scientific phenomena. This unified framework helps students make connections between 
concepts in the curriculum that typically are taught in isolation and are often seen as 
unrelated.  
 
In all three of our cases, computational tools play an important role in helping students 
develop an understanding of levels. By building models with StarLogo, students can 
explore how changes of rules on one level lead to different behaviors and patterns at 
another level. This shifting between levels enables students to examine the mechanisms 
that underlie the phenomena they see in the world. Instead of accepting phenomena as 
black boxes, students can look inside the boxes and even try “rewiring” them.  
 
What is needed to bring the concept of levels into the mainstream of science and 
mathematics education? First, we need more fine-grained research studies that probe the 
conceptions that underlie the ways students understand (and misunderstand) emergent 
levels. Second, we need new computational tools that make it easier for students to build 
their own models of complex systems – and then to help them shift between levels as 
they experiment with those models. 
 
But perhaps most important, we need to radically rethink the mathematics and science 
curriculum. We see levels as providing a new “dissection” of math and science education, 
offering a new way to slice up the traditional disciplines along new axes. The concept of 
levels is, perhaps, the most important ingredient to a more systemic approach to science 
learning – in which learners see mathematics and science as unified, coherent, 
explanatory frameworks for making sense of phenomena at multiples levels of 
organization. The point is not just to make connections among existing disciplines (as is 
advocated in most interdisciplinary approaches) or to merely shift the boundaries 
between existing disciplines, but to rethink the content of the disciplines that are being 
connected.  
 
The approach we have outlined here can be used not only to look at math/science content 
but also to look at the processes of implementing educational reform policies. To bring 



about real change in science and mathematics education, we need think about “levels” on 
yet another level. It is not enough to merely introduce the concept of levels into the 
curriculum. We need to introduce “level thinking” into the process of educational reform. 
Too many educational reform efforts see reform as the accumulation of many incremental 
changes. To bring about real change, we need to think of educational reform itself as an 
emergent process.  
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