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Abstract—Self Adaptive software is forging its way into 
avionics. Such software, while being adaptive, needs to meet 
safety, determinism, and real time responsiveness, like all 
avionics systems. We model avionics self adaptive software as a 
multiagent system. Each agent uses a BDI (Belief Desire 
Intention) model for adaptiveness and also incorporates learning 
to address several constraints. We illustrate our approach using a 
case study of adaptive Flight Management System (FMS). Our 
BDI model of adaptive FMS in Netlogo is a model that is adaptive 
while being deterministic and also responds in real-time. We 
propose a learning algorithm that agents use to adapt themselves 
better and also a way of measuring their adaptivity that provides 
quantitative gains illustrating the system's adaptability.   

Keywords—Avionics; Self Adaptive Software; Multiagent 
Systems; BDI Model; Reinforcement Learning; TD Learning; 
Measures for adaptibility;  

I. INTRODUCTION 
Changing user requirements coupled with dynamic changes 

in the user environment is one of the motivations to turn to self 
adaptive systems. In the context of our avionics case study, we 
identify how a user need to obtain best possible flight plan 
represents a changing user requirement and is coupled to 
uncertainties in the perceived user environment due to the 
continuous change in location of the user vis-à-vis the 
constraints that unfold. Traditional software engineering 
methods rely on a definitive set of rigid requirements and 
design principles to engineer systems for many such seemingly 
uncertain behavioral contexts [1]. 

Self adaptive systems provide a promising track to deal 
with attendant problems but need to address many issues. In 
the context of engineering self-adaptiveness, it is to be 
recognized that software is the primary means by which this 
adaptation is obtained. Therefore, the focus of this paper is 
self-adaptive software in the avionics domain and its 
mechanization via a learning mechanism. The aviation industry 
has been looking at adaptive software as a solution for 
addressing the needs arising from increased automation in the 
avionics systems of modern aircraft. The attendant complexity 
of such systems poses many research challenges. Many areas 
within the civil aviation sector have been identified for such 
systems that operate as ground and on-board applications. The 
attention is on the latter category of applications which needs 

to address the unique challenges related to safety, determinism, 
and real-timeliness. The associated problem of obtaining 
assurance in such systems is a matter of current research. One 
of the important questions before an adaptive system is 
proposed as a candidate system for the safety critical domain of 
avionics is whether it can provide considerable benefit 
compared to traditional approaches. Considering the physical 
and mental workload of the pilots [2], the flight management 
system on board represents a suitable candidate where an 
adaptive system can possibly aid the decision making process. 
Determinism and real-timeliness are aspects closely related to 
dependability, meaning that the system should provide 
sufficient assurance that it can be used in such contexts. Before 
we start dealing with these challenges, we present a brief 
background on the topic of self adaptive software and systems. 
The narrative cites relevance of these different aspects to our 
case study. 

“Adaptation is change of system properties and behavior at 
runtime in response to dynamically varying user needs, 
resource constraints, and changing environments” [3]. The 
spectrum of software adaptation ranges from conditional 
expressions at the bottom (of the spectrum), moving onto 
online algorithms, generic/parameterized algorithms, algorithm 
selection methods to evolutionary and machine-learning 
techniques at the top (of the spectrum) [4]. In our approach for 
the case study example, we operate at the top of this spectrum. 
Different degrees of adaptation are recognized: Behavioral, 
Component, and Architectural adaptation. The case study 
example utilizes the behavioral adaptation approach. A term 
that is generally associated with adaptive systems is 
‘Evolution’: Open-adapted systems allow adaptation of 
behaviors arising due to information shared by peer level 
software components (at runtime, adaptation policies updated 
dynamically) while closed-adapted systems do not incorporate 
such a mechanism and adapt in isolation (fixed adaptation 
policies). The exemplar case study uses the open adaptation 
policy. Generally speaking, an adaptation loop consists of four 
processes: Detection, Decision Making, Acting, and 
Monitoring. This loop has close parallels to adaptive control 
loops in control systems, where there are a number of methods 
to verify system behavior [5]. There are a number of 
techniques for engineering adaptive systems: dynamical 
systems, game theoretic models, control-theoretic models, 
evolutionary computation, state transition systems, social 
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network analysis, agent based simulations, rule based systems, 
and Multiagent systems. In our approach, the adaptive software 
for the representative avionics system is engineered using 
Software Agents, the rationale being [6] : (a) Agent approaches 
provide a higher degree of autonomy and distributed decision 
making (b) Agents are effective in a highly dynamic and 
incompletely known environment (c) the pattern of 
Monitor/sense followed by Analysis/Reasoning and subsequent 
enactment of appropriate behaviors (d) the concept of utility 
for each element and the endeavor to achieve individual goals 
which will collectively contribute towards systemic goals. 

We choose a representative avionics system – namely a 
hypothetical Flight Management Aiding System in the terminal 
area as a case study. A use case scenario is described for the 
case study which provides the requirement and background 
necessary to outline an adaptive system. Thereafter, an agent 
based model is conceptualized for the hypothetical system. 
There are different types of agent architectures: 
Deduction/Logic based, Reactive, BDI, and Hybrid. 
Specifically, a BDI [7] model is chosen as the agency 
mechanism and is used to engineer the adaptivity; the reasons 
for this choice is outlined in a subsequent section of this paper. 
An agent performs more efficiently when learning is 
incorporated. However, the pure traditional BDI architecture is 
weak in the context of learning [8]. However, the area of 
learning in BDI is continuously evolving and recent advances 
[9, 10] present representative methods incorporating the same. 
We present a slightly different method to address this 
important aspect in the context of dependability assurance for 
the system. A consequence of this approach with learning is an 
interesting insight gained for the system and its relationship to 
the environment. A proposal is made of a measure that 
characterizes the degree of cooperativeness that exists among a 
society of agents while they co-operatively solve a problem 
/subtasks or equivalently adapt the system to its environment. 
We also provide data that describes how the co-operation 
varies with disturbances or changes in the environment. In this 
context, the relative co-operation that exists between a pair of 
agents is captured. With a view to emphasize the overall utility 
of our approach, we also provide a measure that characterizes 
the gain that one can obtain using this approach. 

The outline of the paper is as follows: Section 2 captures 
important considerations for incorporating learning in avionics 
self-adaptive software. Section 3 provides a short background 
for the problem of adaptive flight planning and introduces a 
representative Flight Management System which forms the 
case study exhibit. The system is adaptive and performs 
appropriate actions to changing environmental conditions in 
subject airspace. This Section also lays out broad requirements 
in the context of safety, determinism, and real time 
responsiveness in combination with learning specification for 
the case study. Section 4 introduces the model of case study 
cast as a distributed multi-agent system with each agent 
structured on the BDI architecture. We discuss aspects of 
learning within the BDI model. Aspects that embody 
dependability are discussed. Section 5 provides the motivation 
for learning and the various methods available. The 
incorporation of learning within agents that compose the 
system is also discussed. Some measures related to 

adaptivity/co-operation is provided and results obtained with 
experiments during system simulation is elaborated. Section 6 
details related work. Section 7 provides a summary of our work 
and presents directions for future work. 

II. AVIONICS SELF ADAPTIVE SOFTWARE 

A. Considerations for Adaptation and Learning in Avionics 
We present seven different considerations that touch upon 

aspects of adaptation and learning since the two are closely 
related.  

• Reference [11] asks a fundamental question: Does the 
learning (algorithm) provide a significant benefit (in 
terms of safety or performance) compared to current 
approaches? We answer this question in Section 5 and 
indeed show that our approach provides significant 
benefits. 

• The adaptation approach is an important aspect. A 
system that incorporates learning from and which 
adapts itself to its environment [12] may possess more 
capabilities than one that cannot. We answer this 
question too in Section 5. 

• An adaptive system is described by its self* properties: 
Self-managing, self-awareness, self-configuration, 
self-healing, self-protection, self-optimization [4]. 
According to [4], self-* properties are those that 
provide some degree of variability, and consequently, 
help to overcome deviations from expected goals. 
Examination of two of these properties leads to the 
following arguments: (a) The property of self 
optimization is one of the primary system goals and 
since we have engineered the system to be composed 
of various agents, each agent can choose a desire (BDI 
Model) and provide a partial plan to solve the problem 
on hand for the most optimal desire applicable at that 
instant using a learning function. (b) The conceived 
system can be highly self aware since each individual 
agent adjusts its behaviors with every cycle. There is a 
possibility to build ‘learning’ into each agent that 
instructs which desire to choose from in a context. 

• The Adaptation Loop is the main mechanism 
engineering the self* properties. The adaptation loop 
comprises the general processes of monitoring, 
detection, decision, and acting. The decision process 
could be driven by a learning engine embodying a 
learning algorithm that is fast (converges quickly) 
considering real time needs of the solution by 
generating desires categorized into specific levels, and 
adjusted according to the situation. 

• In the context of choosing an adaptation type, we have 
leaned towards using a model free adaptation wherein 
there is no predefined model of the environment or 
system by using Reinforcement Learning. This 
approach helps us to generalize the method for 
problems that are similar, since knowledge gained 
from previous attempts are utilized to arrive at 
decisions. 
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• Learning is closely related to AI (Artificial 
Intelligence) and usage of planning is a prime area of 
our focus. Our agent based system uses continuous 
planning/re-planning versus an algorithmic approach. 

• Certification plays a significant role for the usage of 
technologies available for adaptive systems [11]. The 
considerations for certification bring forth issues that 
are encountered when dealing with avionics systems, 
particularly those that are planned for civil aircrafts, 
primarily due to the safety expectations and the 
attendant stringent requirements and processes. The 
decision making process with the avionics adaptive 
systems assumes a central focus since this is the area 
where a numbers of issues arise. The adaptation stems 
from decision making after learning that accrues over 
time and experience. The decision making therefore is 
entwined with non-determinism that is associated with 
the learning. In section 5, we discuss about the 
different types of learning that is suitable for our 
application and also present a design philosophy that 
attacks the problem of non-determinism of the adaptive 
algorithm.  

III. ADAPTIVE FLIGHT PLANNING: A CASE STUDY 

A. Adaptive Flight Planning System (AFPS) Overview 
Aircrafts flying in the terminal airspace need to get 

clearance from the subject Air Traffic Controller (ATC) to 
complete the transitions that they wish to perform. An 
exemplar situation is one when an aircraft using instrument 
aids and coming into land at a runway, will need to generally 
adhere to a Standard Arrival Chart (STARS) on which is 
indicated various segments of the flight path and the altitude 
levels that it has to adhere to. The pilot needs to evaluate 
clearances from the ATC and then accept or reject such 
clearances. The pilot needs to evaluate conditions that will 
prevent the pilot from accepting the clearance – Weather, 
approaching Traffic, and obstacles (Terrain) and follow the 
route to the runways indicated on the STARS chart. Therefore 
the path that the aircraft needs to take will need to be adapted 
suitably when constraints of weather, traffic, and terrain may 
be in place for such decisions. We make two assumptions for 
our hypothetical system: One, the pilot is free to choose an 
endpoint on the STARS chart as the final destination once he 
enters the terminal area. The end point so chosen will 
continuously change based on weather, traffic and terrain 
constraints. Two, we allow the aircraft to choose a different 
route when conditions on a route chosen become unfavorable 
due to any of the constraints of weather/traffic/terrain. The 
associated pilot workload [2] under such circumstances 
imposes a need for automation. A general flow chart of such a 
system is shown in Figure 1. 

In the case study that we propose, the aircraft enters the 
Chennai (India) Terminal airspace [13] at the top right corner 
of the STARS chart (north east) around the HYDOK Waypoint 
(See Figure 1). The goal is to reach any of the endpoints 
MM515 or MM513 or MM 512 or MM510. 

B. Requirements Specification for Adaptation and Learning 
In this section, we elicit broad requirements related to 

adaptation and learning for the adaptive flight planning system 
outlined in the left hand side of Figure 1. Generally speaking, a 
pilot uses knowledge of the environment obtained by sensors 
on board the aircraft and plans a path using judicious decision 
making skills, after examining an ATC Clearance that has 
conflicts with one or more criterion. The sensors provide 
information about weather, traffic and terrain. The proposed 
system is required to reconcile all conflicts to choose the 
optimal route. 

• Introduction of the notion of elements/entities for 
adaptation: The system shall find a path to the next 
waypoint in the terminal area that is free of conflicts 
from weather, traffic, and terrain constraints. Each 
constraint may be handled by a separate functional 
element/entity. 

• Introduction of the notion of what to adapt: Each 
constraint handled by an element/entity can be solved 
by associating a desire level in which the constraint is 
solved. Therefore, we can state a requirement as 
follows: A route shall be chosen by an element that is 
optimal w.r.t each constraint that is considered, 
without compromising safety. Optimality is 
synonymous with highest desire level. As an example, 
the highest desire may correspond to a route with least 
distance and heading to a waypoint, moderate 
corresponding to a route with least distance only, and 
the lowest desire corresponding to that with least 
heading.  

• Introduction of the notion of a mechanism to adapt: 
Each element/Entity that is responsible for handling a 
constraint shall negotiate and agree upon a mutually 
acceptable solution by changing/adjusting its desire 
level. 

• Introduction of the notion of learning during adaptation 
for a rapid agreement between the entities leading to a 
solution: A utility value shall be associated with each 
desire level and each element/entity handling the 
constraint will choose a desire that maximizes this 
utility value. 

• Introduction of the notion of learning convergence for 
assuring safety property of the system: The system 
shall issue a warning (to divert to an alternate airport) 
when with the fuel remaining onboard the aircraft, it 
appears improbable to find a route (terminal area 
waypoint) that is weather, traffic, and terrain constraint 
free. 

• Introduction of the notion of learning convergence for 
meeting realtimeliness in the system: The system shall 
issue a warning (to divert to an alternate airport) when 
distance trending checks show that the route is 
diverging from its intended goal for a specified amount 
of time. 
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Fig. 1. Terminal area adaptive flight planning problem 

 

 

 

 

 

 

 

Fig. 2. The BDI Model of agency for the adaptive flight planning problem. (figure caption) 

IV. BDI MODEL OF ADAPTIVE FLIGHT PLANNING 
A software Agent is an autonomous software entity that 

interacts with the environment and adjusts itself and its actions 
based on the inputs from the environment, with reactivity, 
proactivity, and cooperation being the salient characteristics. 
The advantage of casting adaptive software as an agent based 
system is that agent based systems support higher degree of 
autonomy and distributed decision making. The Literature cites 
several models of agency exist, but we have chosen the Belief-
Desire-Intention (BDI) model of Agency [7], the reasons 
being: (a) it is parallel to psycho-logical and philosophical 
human behavior (b) its ability to be formulated and reasoned in 
terms of logical semantics [7] (c) response in uncertain 
environments with a right balance of pro-active goal seeking 

behavior and reactive response (d) existence of many practical 
implementations like PRS and dMARS [14]. The second 
characteristic above provides the means to perform model 
checking which forms the basis of proving correct behavior. 
The generic BDI model adapted to our AFPS is shown in 
Figure 2. Beliefs are facts representing what an agent believes 
about the world, including the environment, obtained by each 
agent from the environment and other agents. Desires are the 
goals or end states that the agents wish to achieve. With beliefs 
and desires as inputs, agents deliberate and reconcile to come 
up with a plan, part of which also depicts an agents set of 
intentions. Intentions are committed desires. Agents then need 
to execute their plan as actions or re-plan if a particular plan is 
found to be infeasible. 
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Examination of the entire flight planning problem helps us 
arrive at the list below for the various subsystems. Each 
subsystem except for the Controller receives relevant data from 
its associated sensors and is responsible to provide a flight path 
that is free of conflict for the constraint that it handles. The 
Controller is then responsible to aggregate data from each of 
these sensors and provides an overall solution that will solve all 
of the constraints. The mapping of subsystems to agents is 
straightforward applying principles of functional identification, 
cohesion, separation of concerns, and data exchange at the 
interfaces. 

Weather Subsystem  Weather Agent  
Traffic Subsystem  Traffic Agent  
Terrain Subsystem  Terrain Agent  
ATC Subsystem  ATC Agent  
Controller Subsystem  Negotiation Agent 

Weather, traffic, terrain and ATC agents have a belief 
revision function that updates the beliefs. The desire function 
within each agent generates a set of partial plans based on the 
different desires (goals). One such partial plan from each agent 
is provided to the negotiation agent for adaptive flight 
planning. Within each agent, the decision to use one such 
partial plan is arrived at, through a learning algorithm. The 
learning algorithm that we use is discussed in the next section. 

The negotiation agent acts on the partial plans produced by 
each agent and has a filter function that computes a negotiated 
set that is the final plan. This negotiated final plan represents 
the ‘negotiated set of desires’ and indicates a safe route to an 
end point in terminal area through appropriate way points. 
There is another filter function that computes the waypoint that 
needs to be navigated to, in the immediate context. This latter 
decision forms the intention of the negotiation agent. 

We have implemented the above BDI model in an open 
source tool NetLogo [15], a popular tool to model several 
multi-agent systems. Our BDI model has agents as described 
above and also implements the functions for beliefs, desires 
along with the learning and filter algorithms as briefed above. 

As an exemplar description of one agent, we describe the 
weather agent characterization in our NetLogo implementation. 
Other agents follow a similar approach. The weather agent 
maintains two kinds of beliefs about intermediate and terminal 
waypoints. The first is about whether a waypoint is weather 
constraint free and is available for navigation to it currently. 
The second is about whether a waypoint is weather constraint 
free and is available for navigation for the next (say) 5 minute 
window. The latter is a set of predicted beliefs. Both of these 
aspects are shown in the box with a dashed line attached to the 
output of the ‘Belief Updation’ function in figure 2.We assume 
that sensors provide the 'percepts' of the current and predicted 
weather situation. The weather agent directly maps these 
percepts onto beliefs. Feasible waypoint lists are generated 
examining these base beliefs and segregated according to the 
desires. This is shown in the box with a dashed line attached to 
the output of the ‘Desire Generation’ function in Figure 2. In 
our case, these are highest, moderate, and lowest desire lists. 
The desire generation and selection thus operates in two stages: 
In the first stage it generates the partial plans (options 
generation function, (Opf-1)), and in the next stage chooses the 

‘Best Desire List’ among the three using a learning algorithm 
(Opf-2). This can be seen in Figure 2, at the output of the 
‘Deliberation and Intent Reconciliation’ function. The 
Learning algorithm is used to attach a value to each of the 
generated lists within the individual agents looking at 
‘Negotiated Final Desire List’ that is provided by the 
Controller. Looking at the ‘Negotiated Final Desire List’, each 
Agent learns what would be the most preferred list to send to 
the Negotiation Agent, so that its list is accepted. Therefore, for 
each individual agent handling the constraint, generation of the 
‘Best Desire List’ is equivalent to intention generation. 

The ‘Best Desire Lists’ (waypoint lists from multiple 
agents are reconciled within the negotiation agent which uses a 
simple one-shot negotiation for real-time considerations. The 
Negotiation Agent is formulated with two filter functions filter-
Neg (for Negotiation) and Filter-Int (for Intention). Filter-Neg 
implements the one shot negotiation between weather, traffic, 
and Terrain agents, wherein the waypoint lists from each agent 
is compared with the other to find agreeable common 
waypoints. This common waypoint list forms the ‘Negotiated 
Waypoint List’ During each execution cycle, the current 
waypoint to which the aircraft is heading is set to the head of 
the ‘Negotiated List’. The Intention function (commitment) 
checks if there are changes brought about during an execution 
cycle to the negotiated list that introduces a new waypoint in 
the list that is currently not in it. Only when this happens the 
intention changes. Also, during execution of an agent cycle, 
temporal constraints are checked and a warning is generated if 
it is exceeded. The fuel remaining within the system is also 
tracked within a global cycle that evaluates it continuously and 
a warning is issued if there is an exceedance. A distance 
trending check (mechanism) is also evaluated to monitor 
whether the final solution is converging. A simple execute 
function navigates the current waypoint (housed within 
negotiation agent or with a separate and distinct entity). 

V. LEARNING IN THE BDI MODEL 
In order to incorporate a learning mechanism, with our BDI 

agents, we need to consider the following aspects: (a) Which 
aspect of functionality or performance is best addressed by the 
learning mechanism (b) What parts of the BDI model should 
host the learning mechanism (c) What is the best representative 
structure or mechanism to Integrate learning within the BDI (d) 
How do we engineer the environmental and internal feedbacks 
into an appropriate learning mechanism (e) convergence of the 
algorithm for real-time response. 

We recognize that there are three distinct types of machine 
learning identified in the literature: Supervised learning, 
Unsupervised learning, and Reinforcement learning (RL) [17]. 
For the problem on hand of adaptive flight planning system, we 
have chosen the last category of learning. This follows from 
our observations that every flight is unique when 
considerations of weather, traffic, terrain, ATC clearances are 
considered. Reinforcement learning offers a promising route 
since this type of learning utilizes the concept of a reward that 
a system receives for the response it provides. The flight 
planning system that we propose is engineered as a 
composition of agents, each of which receive a reward which is 
a ‘feedback’ for the system. This is used to ‘adapt’ the 
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behavior of the system. Therefore each agent in the adaptive 
flight planning system tries to maximize the reward in trying to 
find a solution for its constraint. This is in essence our basic 
principle for incorporating learning into the AFPS. The 
learning is incorporated on the open/closed belief sets of 
waypoints in the terminal airspace. As stated earlier, we 
incorporate the learning mechanism into the selection of Desire 
generation process. A judicious choice of a ‘feature’ of the 
environment is used to engineer the feedback mechanism. An 
appropriate algorithm is chosen for real time response and 
convergence. 

A. Temporal Difference Learning 
Temporal Difference (TD) learning algorithm [18] is 

characterized by the following equations: 

 sample = R (s, , s ) +  V (s )                                     (1) 

 V (s) = V (s) +  (sample - V (s))                             (2) 

where R is a reward function, s  S, as set of states and a  
A, a set of actions that are taken in moving from one state to 
another, s  is the next state of s,  is a policy  : S A,  is a 
discount factor, and  is the learning rate. Equation (2) is called 
the update equation and updates the value of states each time a 
new experience is obtained (s, a, s , r). V is a value function 
that associates a value to each state. 

We have chosen the Temporal Difference (TD) algorithm 
for incorporating learning within our proposed Flight 
Management System. The reasons for this choice are: 

• TD learning is model free – where we do not know a 
model (T) or reward function (R) {A model T can be 
defined as T(s,a,s ), where s  S, as set of states and a  
A, a set of actions; Reward function can be defined as 
R(s, a, s ). Short term weather, traffic, and terrain 
(when position changes) in the terminal area are 
stochastic processes and cannot have a precise model. 

• The policy  can be mapped to the method/plan to 
satisfy the goal/desire of an agent represented by: 
HDxx, MDxx, LDxx, where xx is the constraint as 
noted earlier in section III B, and HD, MD, LD are 
highest, moderate and lowest desire qualifiers. Each 
Agent (Weather, Traffic, Terrain) uses and examines 
these policies. It is desirable that each agent operate 
with the best policy (optimal flight path planning).  

• The value function for a policy is most appropriate, 
where the exploration policy  is executed to estimate 
the value of states that will provide the highest value. 
Our mechanization of the value function (provided in 
the next section) is such that, when a temporal 
difference is used, we will observe that this has an 
effect of moving the state values towards whatever 
successor state occurs. This running average will direct 
the system towards its final goal of reaching the 
terminal endpoints  

• The TD algorithm converges quickly [18, 19] and is 
therefore suitable for the real-time response of the 
system 

B. Mechanizing TD learning within BDI Agents for Adaptive 
Flight Planning 
In order to understand the mechanization of TD learning 

algorithm within our system, we first introduce the abstract 
finite state transition system model. Figure 3 shows the finite 
state model abstracted from our NetLogo [15, 16] 
implementation. This model exhibits predominantly Boolean 
behavior that is sound with respect to the BDI model and is 
used for the purposes of verification by model checking [20] 
which is not discussed further in this paper. 

A cycle of the system starts at the top with a check of the 
flight plan and fuel sufficiency at the top (s0). A check is made 
in s1 to ensure that all sensor updates (weather, traffic, and 
terrain) are captured. States (s2, s3, s4, s5, s6) within the 
extreme left swimlane constitute the weather agent 
mechanization, while states (s7, s8, s9, s10, s11) in the middle 
swimlane constitute the traffic agent mechanization, and the 
states (s12, s13, s14, s15, s16) in the right swimlane constitute 
the traffic agent mechanization. The function brf-Xx-Conf-
free-WPTs|t (produces the set of beliefs that indicates 
waypoints that are conflict free with respect to the constraint 
Xx, at time t), is associated with states s2, s7, and s12. 
Similarly, the function Opf-1-Xx|t is associated with states {s3, 
s4, s5}, {s8, s9, s10}, and {s13, s14, s15}. The function Opf-2-
Xx|t is incorporated with states s2, s7, s12. The function Filter-
Neg|t is associated with state s20 while function Filter-Int|t is 
associated with state s22. 

The central focus for this paper is the mechanization of 
Opf-2-Xx|t. Each Agent evaluates a value function associated 
with a desire - classified as high, moderate and low. The desire 
classifications are correspondingly mapped to the requirements 
of waypoint prioritization order ((Distance + Heading), 
(Distance), (Heading)) mentioned in Section III B. When an 
agent first finds a set of waypoints as the solution set {Beliefs-
Xx-Conf-free-WPTs}t (the set of beliefs that indicates 
waypoints that are conflict free with respect to the constraint 
Xx, at time t), we define the value of the states s3, s4, s5, with:  

 V(s) = K1 / (||{Beliefs-Xx-Conf-free-WPTs}t||)       (3) 

Where 

      (4) 

Note that {Beliefs-Xx-Conf-free-WPTs}t, can be 
segregated into three sets based on the waypoint prioritization 
order (D+H, D, H) and therefore this results in generation of 
{Desires-Values}t. These map to the policies 1, 2, and 3. 
K1 is a constant (set equal to 100 in our experiments) and 
(DIST-WPTS-RWY) denotes the distance of each of the 
conflict free waypoints from the runway, considering the 
constraint Xx. We then perform a summation of distances of all 
such waypoints (n), the total number being denoted by NCFW. 
Observe that we have used a ‘feature’ based representation, 
which is a function that maps a state to a real number. 
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Fig. 3. Terminal area adaptive flight planning problem. 

 

 

 

 

 

 

 

 

 

Fig. 4. The mechanization of TD Learning within an Agent. 

The calculation of the reward for each agent is given by: 

Rt+1 = K1 / [ (||{Beliefs-Xx-Conf-free-WPTs}t||) ~ 
(||{Beliefs-Neg-Conf-free-NAV-WPTs}t ||                          (5) 

Where {Beliefs-Neg-Conf-free-NAV-WPTs}t represents 
set of waypoints found conflict free with respect to all of the 
constraints, ATC cleared (navigable waypoint set) 

We recognize that: 

V(s ) = K2 / (||{Beliefs-Xx-Conf-free-WPTs}t+1 ||)   (6) 

In calculating ||{Beliefs-Xx-Conf-free-WPTs}t+1||, we use 
the same formula provided in (4) but the distances are 
decreased by an amount that the aircraft would have travelled 
in t = 1 time unit. The same arguments and propositions are 
valid for states {s8, s9, s10}, and {s13, s14, s15}. The function 
opf-2-Xx|t is the learning function and implements equations 
(3) through (6). K2 is a constant (100 in our experiments). 
Filter-Neg is a negotiation function and implemented as a 
simple match and retain algorithm within Negotiation Agent. 

Figure 4 shows the flowchart that outlines the complete 
mechanization of the TD learning algorithm within an agent. 
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The negotiation process starts with each agent choosing the 
highest desire initially and adjusting the desire levels based on 
the learning as time progresses. The values of K1 and K2 were 
chosen based on the maximum distance typically represented 
on STARS charts. 

C. Measures for adaptibility 
Our NetLogo Implementation simulates the AFPS wherein 

every agent is invoked in a simulation cycle. The GUI 
(Graphical User Interface) implementation provides a method 
to set the ‘Availability’ of the waypoints for each constraint. 
This ‘Availability’ is dynamically changed by random means, 
based on a slider setting that conceptually maps to the severity 
of the constraint. By this method we can make dynamic 
changes in the environment related to weather, traffic and 
terrain. The GUI implementation also provides an option to set 
own aircraft speeds in the terminal area. Yet another option 
provides the ability to switch on/off a random selection of the 
terminal chosen for path navigation (Intention selection) within 
the final negotiated list. We have experimented with three 
implementation variations: one without the use of any form of 
learning, another using the temporal difference learning; In yet 
another implementation of the system, we have added another 
algorithm that provides additional reinforcement learning that 
uses the experience gained from episodes. An episode is one 
complete run of the system from start to a terminal end point. 
The method involves remembering (via writing into a file) the 
shortest navigable path to the terminal waypoints after arriving 
at a node. This ‘desire.txt’ file is updated after every episode to 
update any of the lists (navigable strings) that need to be 
changed due to discovery of new shorter paths. We have 
performed multiple runs with our NetLogo Implementation of 
the agent based AFPS with these different implementations. 
Figure 5 below is a snapshot of the desire changes in a single 
episode with TD learning and the associated code snippet 
showing Opf-2 implementation (Wx Agent). 

 

Fig. 5. The NetLogo Implementation 

In order to answer questions that we posed in Section II A, 
we analyzed the experimental data which recorded the aircraft 
speed, weather condition, terrain condition, ATC clearance, the 

values of K1, K2, , and . The important output measures of 
Time Ticks of simulation (leading to time of flight), Distance 
travelled by the aircraft was also recorded. The following 
measures are proposed to answer the question related to benefit 
(performance) in the context of usage of learning within the 
system: 

Measure of Cooperative Gain 1 = Time to complete an 
episode without Learning / Time to complete an episode 
with Learning                                                                      (7) 

Measure of Cooperative Gain 2 = Distance travelled to 
complete an episode without Learning / Distance 

travelled to complete an episode with Learning           (8) 

Measures in equations (7) and (8) provide a simple way to 
quantitatively answer questions on performance and efficiency 
of a learning algorithm (denominators in equations (7) and (8) 
will have different values for different learning algorithms). 

In order to analyze how the system is adapting to changes, the 
following measures are proposed  

Coeff. of Cooperation for an Agent (for an episode) = 

[(Highest Desire Level * Time ticks ) - (Instantaneous 
Desire Level * Time ticks )] / (Highest Desire Level * 

time ticks )                                                                           (9) 

Relative Coeff. of Cooperation (between agents M,N 
for an episode) = 

Coeff of co-operation for an Agent M / Coeff. of co-
operation for an Agent N, M N                                  (10) 

The ‘Desire Level’s are numerically provided values of 1, 
2, and 3 corresponding to the lowest, moderate and highest 
desires that we have described in Sections III B and V B. 
Measures in equations (9) and (10) are examined in the context 
of varying , , and most importantly, availability. Equation (9) 
provides a measure for the amount of adjustment that an agent 
had to accommodate in its desire level. This can be easily 
understood from Figure 6. The diagram shows how an agent 
that initially operates at the highest level, lowers its desire level 
to operate at the moderate desire level t1, holds the desire level 
until t3 whereupon it lowers it further down and at t4, it raises 
to the highest desire level. Considering time until t4, we see 
that the co-operation offered by this agent is directly 
proportional to the area under the instantaneous desire level. 
Therefore, over a sum period of time, this can be expressed as 
the ratio of the area under the instantaneous desire level to that 
under the idealized highest desire level 

 

Fig. 6. Coefficient of co-operation 
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Having obtained a measure for an individual agent, it is 
cogent to propose a measure (equation (10)) that compares co-
operation between a pair of agents. This provides a quantitative 
measure of the amount of mutual co-operation that exists 
relative to the disturbances in the environment for an episode 
and helps compare the learning algorithms. In our initial Monte 
Carlo type experiments for 67 episodes, we captured 
experimental data for which K1 and K2 were set to 100, , and 
 were each set to 0.9. The availability of waypoints in the 

STARS chart (Figure 1) for each constraint (weather, traffic, 
and terrain) was varied from 100% (always available) to 55 % 
(half available). Our NeLogo implementation also has built in 
the functions to record the number of time ticks, and compute 
the distance travelled, and the individual coefficients of co-
operation for each episode. The results were populated into a 
spreadsheet and the relative coefficients of cooperation for 
each pair of agents was computed and tabulated. Table I shows 
the summary of our experimental results. 

TABLE I.  EXPERIMENTAL RESULTS FOR PROPOSED MEASURES 

Measures for Adaptability 
Measure Mean Value Standard Deviation 

Coeff. of Cooperation – 
TD Learning  

0.294 (Wx Ag) 
0.287 (Tr Ag) 
0.278 (Te Ag) 

0.141 (Wx Ag) 
0.139 (Tr Ag) 
0.135 (Te Ag) 

Coeff. of Cooperation – 
TD Learning + Add RL 
Learning 

0.282 (Wx Ag) 
0.281 (Tr Ag) 
0.265 (Te Ag) 

0.118 (Wx Ag) 
0.124 (Tr Ag) 
0.124 (Te Ag) 

Relative Coeff. of 
Cooperation – TD, ADD 
RL 

1.097,1.059(Wx/Tr) 
1.121,1.36 (Wx/Te) 
1.13,1.393(Tr/Te) 

0.51,0.33(Wx/Tr) 
0.50,1.73(Wx/Te) 
0.59, 2.06(Tr/Te) 

Cooperative Gain 1 & 2 -
TD 

2.99 (G1) 
2.99 (G2) 

7.16 (G1) 
7.16 (G2) 

Cooperative Gain 1 & 2 –
TD + Add RL Learning 

4.42 (G1) 
4.42 (G2) 

13.579 (G1) 
13.579 (G2) 

 

Fig. 7. Coefficient of co-operation plots 

The left hand side of Figure 7 shows the plots of coefficient 
of co-operation (Y-axis) against Availability (X-axis) of 
terminals (constraints of weather, traffic, and terrain). 
Interpreting these plots, we arrive at the conclusion that we can 
obtain about 30% co-operation from every agent on the 
average. Maximum co-operation of about 60% is when the 
availability of terminals is high (85-100%) i.e, when the 
terminals are not heavily constrained. Minimum co-operation 
of about 10% is obtained when the availability of terminals is 
low (55%) i.e, when the terminals are heavily constrained. The 
right hand side of Figure 7 shows that the Coefficient of co-
operation follows a normal distribution and the specific values 
are tabulated in Table 1. 

Figure 8 provides a plot of time taken to reach the final 
waypoint versus the test case number. We progressively 
decreased the terminal availability with increasing test case 
numbers. The plot with highest peak indicates the case where 
no learning was employed and the other plot indicates the one 
where TD learning was employed. The initial test cases show 
conditions where availability was high. The terminal 
availability drops to 90% at test case 13, to 75 % around test 
case 25, to 67% around test case 40, and to 60% around test 
case 40, and finally to 55% around test case 67. We see that as 
the terminal availability decreases, the time taken to reach the 
final waypoint shows significant decrease for TD learning. 

 

Fig. 8. Co-operative Gain plots 

We see from the recorded experimental data from Table I 
that gain of 3 is obtained for the TD learning case while a gain 
of 4 is obtained for the case where additional reinforcement 
learning was added. Similar results were obtained when the 
distance travelled to reach the final waypoint versus the test 
case number was plotted. 

VI. RELATED WORK 
Work in the area of adaptive flight path/trajectory planning 

has been continuously evolving. We present and contrast our 
work with other important work in this area. AGENTFLY is a 
simulation platform that can simulate UAVs (unmanned Aerial 
Vehicles) and uses the free flight concepts [21]. The base is a 
modified A* algorithm. Path Planning is done in two phases: 
spatial and time planning. Our work differs in the fact that we 
integrate both of them in a single cycle. [22] is a recent 
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publication on the use of adaptive path planning for UAVs 
using bi-level planning in place of real-time adaptive path 
planning and variable planning step techniques to build paths 
or new reference waypoints only when necessary. Our work 
differs from the fact that we do not anticipate the kind of 
performance variations that take into account the ownship 
performance variations; Also objectives are setup to adapt the 
flight path using a hierarchical principal-subordinate 
relationship – the leader’s objective is to converge by 
providing a holistic trajectory while the follower optimizes 
locally – we can see a similar pattern in our work. [23] is a 
fairly recent treatise on generation of safe and reliable 
trajectories using hierarchical motion planning, in which 
trajectory generation and optimization is decomposed into two 
layers: geometric layer and dynamics layer. Our work, though 
focused on both these aspects, does not separate them, but 
incorporates both concepts within a single agent. Specifically, 
multi-resolution motion planning using wavelet-based cell 
decompositions has been shown to be efficient. The work 
represents the environment as a graph – we use a list. The 
trajectory generation uses an H-Costs algorithm with a discrete 
path planner that lifts partial graphs to satisfy constraints. Our 
arrangement of individual agents with the negotiation agent 
provides a similar effect in generating the total solution. [24] 
presents an adaptive trajectory planner for emergency landing 
scenario, using planning and reactive agents. The adaptive 
trajectory planning is built into the planning agent using three 
agents ‘Pilot’, ‘Hybrid’ , and ‘FMS Agent’ which use rule 
based approaches. We employ a more loosely coupled and 
generic approach in contrast. The use of RL in safety critical 
systems is provided in [25]. 

VII. CONCLUSION AND FUTURE WORK 
Our work in formulating and simulating the Adaptive 

Flight Planning System with agents, has demonstrated how 
“Learning” could be introduced for an avionics domain 
application. During the initial stages we captured  
specifications particularly related to adaptability and learning 
for the system with intent to provide later the algorithms and 
methods to ensure safety, timeliness and deterministic aspects 
of the domain. Therefore ensures a means to articulate the 
system better for design transformation for the learning 
method. The choice of using Reinforcement Learning (TD) 
with reasoning and experimental results is provided. This work 
clearly shows how learning provides significant benefits 
(cooperative gains of 3 to 4.5 times). Also measures to 
characterize and analyze the system are proposed along with 
experimental data. We are carrying out further research 
towards formulating similar frameworks and their verification 
with aspects of safety, determinism, and realtimeliness in 
focus. 
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