
Incorporating Adaptivity using Learning in Avionics
Self Adaptive Software: A Case Study

Rajanikanth N Kashi *
Honeywell Technology Solutions Laboratories

Bangalore, India
rajanikanth.kashi@honeywell.com

(* Corresponding Author)

Meenakshi D’Souza
S Kumar Baghel
Nitin Kulkarni

IIIT-Bangalore, India

Abstract—Self Adaptive software is forging its way into
avionics. Such software, while being adaptive, needs to meet
safety, determinism, and real time responsiveness, like all
avionics systems. We model avionics self adaptive software as a
multiagent system. Each agent uses a BDI (Belief Desire
Intention) model for adaptiveness and also incorporates learning
to address several constraints. We illustrate our approach using a
case study of adaptive Flight Management System (FMS). Our
BDI model of adaptive FMS in Netlogo is a model that is adaptive
while being deterministic and also responds in real-time. We
propose a learning algorithm that agents use to adapt themselves
better and also a way of measuring their adaptivity that provides
quantitative gains illustrating the system's adaptability.

Keywords—Avionics; Self Adaptive Software; Multiagent
Systems; BDI Model; Reinforcement Learning; TD Learning;
Measures for adaptibility;

I. INTRODUCTION
Changing user requirements coupled with dynamic changes

in the user environment is one of the motivations to turn to self
adaptive systems. In the context of our avionics case study, we
identify how a user need to obtain best possible flight plan
represents a changing user requirement and is coupled to
uncertainties in the perceived user environment due to the
continuous change in location of the user vis-à-vis the
constraints that unfold. Traditional software engineering
methods rely on a definitive set of rigid requirements and
design principles to engineer systems for many such seemingly
uncertain behavioral contexts [1].

Self adaptive systems provide a promising track to deal
with attendant problems but need to address many issues. In
the context of engineering self-adaptiveness, it is to be
recognized that software is the primary means by which this
adaptation is obtained. Therefore, the focus of this paper is
self-adaptive software in the avionics domain and its
mechanization via a learning mechanism. The aviation industry
has been looking at adaptive software as a solution for
addressing the needs arising from increased automation in the
avionics systems of modern aircraft. The attendant complexity
of such systems poses many research challenges. Many areas
within the civil aviation sector have been identified for such
systems that operate as ground and on-board applications. The
attention is on the latter category of applications which needs

to address the unique challenges related to safety, determinism,
and real-timeliness. The associated problem of obtaining
assurance in such systems is a matter of current research. One
of the important questions before an adaptive system is
proposed as a candidate system for the safety critical domain of
avionics is whether it can provide considerable benefit
compared to traditional approaches. Considering the physical
and mental workload of the pilots [2], the flight management
system on board represents a suitable candidate where an
adaptive system can possibly aid the decision making process.
Determinism and real-timeliness are aspects closely related to
dependability, meaning that the system should provide
sufficient assurance that it can be used in such contexts. Before
we start dealing with these challenges, we present a brief
background on the topic of self adaptive software and systems.
The narrative cites relevance of these different aspects to our
case study.

“Adaptation is change of system properties and behavior at
runtime in response to dynamically varying user needs,
resource constraints, and changing environments” [3]. The
spectrum of software adaptation ranges from conditional
expressions at the bottom (of the spectrum), moving onto
online algorithms, generic/parameterized algorithms, algorithm
selection methods to evolutionary and machine-learning
techniques at the top (of the spectrum) [4]. In our approach for
the case study example, we operate at the top of this spectrum.
Different degrees of adaptation are recognized: Behavioral,
Component, and Architectural adaptation. The case study
example utilizes the behavioral adaptation approach. A term
that is generally associated with adaptive systems is
‘Evolution’: Open-adapted systems allow adaptation of
behaviors arising due to information shared by peer level
software components (at runtime, adaptation policies updated
dynamically) while closed-adapted systems do not incorporate
such a mechanism and adapt in isolation (fixed adaptation
policies). The exemplar case study uses the open adaptation
policy. Generally speaking, an adaptation loop consists of four
processes: Detection, Decision Making, Acting, and
Monitoring. This loop has close parallels to adaptive control
loops in control systems, where there are a number of methods
to verify system behavior [5]. There are a number of
techniques for engineering adaptive systems: dynamical
systems, game theoretic models, control-theoretic models,
evolutionary computation, state transition systems, social

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

978-1-5090-2029-4/16/$31.00 @2016 IEEE 220

network analysis, agent based simulations, rule based systems,
and Multiagent systems. In our approach, the adaptive software
for the representative avionics system is engineered using
Software Agents, the rationale being [6] : (a) Agent approaches
provide a higher degree of autonomy and distributed decision
making (b) Agents are effective in a highly dynamic and
incompletely known environment (c) the pattern of
Monitor/sense followed by Analysis/Reasoning and subsequent
enactment of appropriate behaviors (d) the concept of utility
for each element and the endeavor to achieve individual goals
which will collectively contribute towards systemic goals.

We choose a representative avionics system – namely a
hypothetical Flight Management Aiding System in the terminal
area as a case study. A use case scenario is described for the
case study which provides the requirement and background
necessary to outline an adaptive system. Thereafter, an agent
based model is conceptualized for the hypothetical system.
There are different types of agent architectures:
Deduction/Logic based, Reactive, BDI, and Hybrid.
Specifically, a BDI [7] model is chosen as the agency
mechanism and is used to engineer the adaptivity; the reasons
for this choice is outlined in a subsequent section of this paper.
An agent performs more efficiently when learning is
incorporated. However, the pure traditional BDI architecture is
weak in the context of learning [8]. However, the area of
learning in BDI is continuously evolving and recent advances
[9, 10] present representative methods incorporating the same.
We present a slightly different method to address this
important aspect in the context of dependability assurance for
the system. A consequence of this approach with learning is an
interesting insight gained for the system and its relationship to
the environment. A proposal is made of a measure that
characterizes the degree of cooperativeness that exists among a
society of agents while they co-operatively solve a problem
/subtasks or equivalently adapt the system to its environment.
We also provide data that describes how the co-operation
varies with disturbances or changes in the environment. In this
context, the relative co-operation that exists between a pair of
agents is captured. With a view to emphasize the overall utility
of our approach, we also provide a measure that characterizes
the gain that one can obtain using this approach.

The outline of the paper is as follows: Section 2 captures
important considerations for incorporating learning in avionics
self-adaptive software. Section 3 provides a short background
for the problem of adaptive flight planning and introduces a
representative Flight Management System which forms the
case study exhibit. The system is adaptive and performs
appropriate actions to changing environmental conditions in
subject airspace. This Section also lays out broad requirements
in the context of safety, determinism, and real time
responsiveness in combination with learning specification for
the case study. Section 4 introduces the model of case study
cast as a distributed multi-agent system with each agent
structured on the BDI architecture. We discuss aspects of
learning within the BDI model. Aspects that embody
dependability are discussed. Section 5 provides the motivation
for learning and the various methods available. The
incorporation of learning within agents that compose the
system is also discussed. Some measures related to

adaptivity/co-operation is provided and results obtained with
experiments during system simulation is elaborated. Section 6
details related work. Section 7 provides a summary of our work
and presents directions for future work.

II. AVIONICS SELF ADAPTIVE SOFTWARE

A. Considerations for Adaptation and Learning in Avionics
We present seven different considerations that touch upon

aspects of adaptation and learning since the two are closely
related.

• Reference [11] asks a fundamental question: Does the
learning (algorithm) provide a significant benefit (in
terms of safety or performance) compared to current
approaches? We answer this question in Section 5 and
indeed show that our approach provides significant
benefits.

• The adaptation approach is an important aspect. A
system that incorporates learning from and which
adapts itself to its environment [12] may possess more
capabilities than one that cannot. We answer this
question too in Section 5.

• An adaptive system is described by its self* properties:
Self-managing, self-awareness, self-configuration,
self-healing, self-protection, self-optimization [4].
According to [4], self-* properties are those that
provide some degree of variability, and consequently,
help to overcome deviations from expected goals.
Examination of two of these properties leads to the
following arguments: (a) The property of self
optimization is one of the primary system goals and
since we have engineered the system to be composed
of various agents, each agent can choose a desire (BDI
Model) and provide a partial plan to solve the problem
on hand for the most optimal desire applicable at that
instant using a learning function. (b) The conceived
system can be highly self aware since each individual
agent adjusts its behaviors with every cycle. There is a
possibility to build ‘learning’ into each agent that
instructs which desire to choose from in a context.

• The Adaptation Loop is the main mechanism
engineering the self* properties. The adaptation loop
comprises the general processes of monitoring,
detection, decision, and acting. The decision process
could be driven by a learning engine embodying a
learning algorithm that is fast (converges quickly)
considering real time needs of the solution by
generating desires categorized into specific levels, and
adjusted according to the situation.

• In the context of choosing an adaptation type, we have
leaned towards using a model free adaptation wherein
there is no predefined model of the environment or
system by using Reinforcement Learning. This
approach helps us to generalize the method for
problems that are similar, since knowledge gained
from previous attempts are utilized to arrive at
decisions.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

221

• Learning is closely related to AI (Artificial
Intelligence) and usage of planning is a prime area of
our focus. Our agent based system uses continuous
planning/re-planning versus an algorithmic approach.

• Certification plays a significant role for the usage of
technologies available for adaptive systems [11]. The
considerations for certification bring forth issues that
are encountered when dealing with avionics systems,
particularly those that are planned for civil aircrafts,
primarily due to the safety expectations and the
attendant stringent requirements and processes. The
decision making process with the avionics adaptive
systems assumes a central focus since this is the area
where a numbers of issues arise. The adaptation stems
from decision making after learning that accrues over
time and experience. The decision making therefore is
entwined with non-determinism that is associated with
the learning. In section 5, we discuss about the
different types of learning that is suitable for our
application and also present a design philosophy that
attacks the problem of non-determinism of the adaptive
algorithm.

III. ADAPTIVE FLIGHT PLANNING: A CASE STUDY

A. Adaptive Flight Planning System (AFPS) Overview
Aircrafts flying in the terminal airspace need to get

clearance from the subject Air Traffic Controller (ATC) to
complete the transitions that they wish to perform. An
exemplar situation is one when an aircraft using instrument
aids and coming into land at a runway, will need to generally
adhere to a Standard Arrival Chart (STARS) on which is
indicated various segments of the flight path and the altitude
levels that it has to adhere to. The pilot needs to evaluate
clearances from the ATC and then accept or reject such
clearances. The pilot needs to evaluate conditions that will
prevent the pilot from accepting the clearance – Weather,
approaching Traffic, and obstacles (Terrain) and follow the
route to the runways indicated on the STARS chart. Therefore
the path that the aircraft needs to take will need to be adapted
suitably when constraints of weather, traffic, and terrain may
be in place for such decisions. We make two assumptions for
our hypothetical system: One, the pilot is free to choose an
endpoint on the STARS chart as the final destination once he
enters the terminal area. The end point so chosen will
continuously change based on weather, traffic and terrain
constraints. Two, we allow the aircraft to choose a different
route when conditions on a route chosen become unfavorable
due to any of the constraints of weather/traffic/terrain. The
associated pilot workload [2] under such circumstances
imposes a need for automation. A general flow chart of such a
system is shown in Figure 1.

In the case study that we propose, the aircraft enters the
Chennai (India) Terminal airspace [13] at the top right corner
of the STARS chart (north east) around the HYDOK Waypoint
(See Figure 1). The goal is to reach any of the endpoints
MM515 or MM513 or MM 512 or MM510.

B. Requirements Specification for Adaptation and Learning
In this section, we elicit broad requirements related to

adaptation and learning for the adaptive flight planning system
outlined in the left hand side of Figure 1. Generally speaking, a
pilot uses knowledge of the environment obtained by sensors
on board the aircraft and plans a path using judicious decision
making skills, after examining an ATC Clearance that has
conflicts with one or more criterion. The sensors provide
information about weather, traffic and terrain. The proposed
system is required to reconcile all conflicts to choose the
optimal route.

• Introduction of the notion of elements/entities for
adaptation: The system shall find a path to the next
waypoint in the terminal area that is free of conflicts
from weather, traffic, and terrain constraints. Each
constraint may be handled by a separate functional
element/entity.

• Introduction of the notion of what to adapt: Each
constraint handled by an element/entity can be solved
by associating a desire level in which the constraint is
solved. Therefore, we can state a requirement as
follows: A route shall be chosen by an element that is
optimal w.r.t each constraint that is considered,
without compromising safety. Optimality is
synonymous with highest desire level. As an example,
the highest desire may correspond to a route with least
distance and heading to a waypoint, moderate
corresponding to a route with least distance only, and
the lowest desire corresponding to that with least
heading.

• Introduction of the notion of a mechanism to adapt:
Each element/Entity that is responsible for handling a
constraint shall negotiate and agree upon a mutually
acceptable solution by changing/adjusting its desire
level.

• Introduction of the notion of learning during adaptation
for a rapid agreement between the entities leading to a
solution: A utility value shall be associated with each
desire level and each element/entity handling the
constraint will choose a desire that maximizes this
utility value.

• Introduction of the notion of learning convergence for
assuring safety property of the system: The system
shall issue a warning (to divert to an alternate airport)
when with the fuel remaining onboard the aircraft, it
appears improbable to find a route (terminal area
waypoint) that is weather, traffic, and terrain constraint
free.

• Introduction of the notion of learning convergence for
meeting realtimeliness in the system: The system shall
issue a warning (to divert to an alternate airport) when
distance trending checks show that the route is
diverging from its intended goal for a specified amount
of time.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

222

Fig. 1. Terminal area adaptive flight planning problem

Fig. 2. The BDI Model of agency for the adaptive flight planning problem. (figure caption)

IV. BDI MODEL OF ADAPTIVE FLIGHT PLANNING
A software Agent is an autonomous software entity that

interacts with the environment and adjusts itself and its actions
based on the inputs from the environment, with reactivity,
proactivity, and cooperation being the salient characteristics.
The advantage of casting adaptive software as an agent based
system is that agent based systems support higher degree of
autonomy and distributed decision making. The Literature cites
several models of agency exist, but we have chosen the Belief-
Desire-Intention (BDI) model of Agency [7], the reasons
being: (a) it is parallel to psycho-logical and philosophical
human behavior (b) its ability to be formulated and reasoned in
terms of logical semantics [7] (c) response in uncertain
environments with a right balance of pro-active goal seeking

behavior and reactive response (d) existence of many practical
implementations like PRS and dMARS [14]. The second
characteristic above provides the means to perform model
checking which forms the basis of proving correct behavior.
The generic BDI model adapted to our AFPS is shown in
Figure 2. Beliefs are facts representing what an agent believes
about the world, including the environment, obtained by each
agent from the environment and other agents. Desires are the
goals or end states that the agents wish to achieve. With beliefs
and desires as inputs, agents deliberate and reconcile to come
up with a plan, part of which also depicts an agents set of
intentions. Intentions are committed desires. Agents then need
to execute their plan as actions or re-plan if a particular plan is
found to be infeasible.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

223

Examination of the entire flight planning problem helps us
arrive at the list below for the various subsystems. Each
subsystem except for the Controller receives relevant data from
its associated sensors and is responsible to provide a flight path
that is free of conflict for the constraint that it handles. The
Controller is then responsible to aggregate data from each of
these sensors and provides an overall solution that will solve all
of the constraints. The mapping of subsystems to agents is
straightforward applying principles of functional identification,
cohesion, separation of concerns, and data exchange at the
interfaces.

Weather Subsystem Weather Agent
Traffic Subsystem Traffic Agent
Terrain Subsystem Terrain Agent
ATC Subsystem ATC Agent
Controller Subsystem Negotiation Agent

Weather, traffic, terrain and ATC agents have a belief
revision function that updates the beliefs. The desire function
within each agent generates a set of partial plans based on the
different desires (goals). One such partial plan from each agent
is provided to the negotiation agent for adaptive flight
planning. Within each agent, the decision to use one such
partial plan is arrived at, through a learning algorithm. The
learning algorithm that we use is discussed in the next section.

The negotiation agent acts on the partial plans produced by
each agent and has a filter function that computes a negotiated
set that is the final plan. This negotiated final plan represents
the ‘negotiated set of desires’ and indicates a safe route to an
end point in terminal area through appropriate way points.
There is another filter function that computes the waypoint that
needs to be navigated to, in the immediate context. This latter
decision forms the intention of the negotiation agent.

We have implemented the above BDI model in an open
source tool NetLogo [15], a popular tool to model several
multi-agent systems. Our BDI model has agents as described
above and also implements the functions for beliefs, desires
along with the learning and filter algorithms as briefed above.

As an exemplar description of one agent, we describe the
weather agent characterization in our NetLogo implementation.
Other agents follow a similar approach. The weather agent
maintains two kinds of beliefs about intermediate and terminal
waypoints. The first is about whether a waypoint is weather
constraint free and is available for navigation to it currently.
The second is about whether a waypoint is weather constraint
free and is available for navigation for the next (say) 5 minute
window. The latter is a set of predicted beliefs. Both of these
aspects are shown in the box with a dashed line attached to the
output of the ‘Belief Updation’ function in figure 2.We assume
that sensors provide the 'percepts' of the current and predicted
weather situation. The weather agent directly maps these
percepts onto beliefs. Feasible waypoint lists are generated
examining these base beliefs and segregated according to the
desires. This is shown in the box with a dashed line attached to
the output of the ‘Desire Generation’ function in Figure 2. In
our case, these are highest, moderate, and lowest desire lists.
The desire generation and selection thus operates in two stages:
In the first stage it generates the partial plans (options
generation function, (Opf-1)), and in the next stage chooses the

‘Best Desire List’ among the three using a learning algorithm
(Opf-2). This can be seen in Figure 2, at the output of the
‘Deliberation and Intent Reconciliation’ function. The
Learning algorithm is used to attach a value to each of the
generated lists within the individual agents looking at
‘Negotiated Final Desire List’ that is provided by the
Controller. Looking at the ‘Negotiated Final Desire List’, each
Agent learns what would be the most preferred list to send to
the Negotiation Agent, so that its list is accepted. Therefore, for
each individual agent handling the constraint, generation of the
‘Best Desire List’ is equivalent to intention generation.

The ‘Best Desire Lists’ (waypoint lists from multiple
agents are reconciled within the negotiation agent which uses a
simple one-shot negotiation for real-time considerations. The
Negotiation Agent is formulated with two filter functions filter-
Neg (for Negotiation) and Filter-Int (for Intention). Filter-Neg
implements the one shot negotiation between weather, traffic,
and Terrain agents, wherein the waypoint lists from each agent
is compared with the other to find agreeable common
waypoints. This common waypoint list forms the ‘Negotiated
Waypoint List’ During each execution cycle, the current
waypoint to which the aircraft is heading is set to the head of
the ‘Negotiated List’. The Intention function (commitment)
checks if there are changes brought about during an execution
cycle to the negotiated list that introduces a new waypoint in
the list that is currently not in it. Only when this happens the
intention changes. Also, during execution of an agent cycle,
temporal constraints are checked and a warning is generated if
it is exceeded. The fuel remaining within the system is also
tracked within a global cycle that evaluates it continuously and
a warning is issued if there is an exceedance. A distance
trending check (mechanism) is also evaluated to monitor
whether the final solution is converging. A simple execute
function navigates the current waypoint (housed within
negotiation agent or with a separate and distinct entity).

V. LEARNING IN THE BDI MODEL
In order to incorporate a learning mechanism, with our BDI

agents, we need to consider the following aspects: (a) Which
aspect of functionality or performance is best addressed by the
learning mechanism (b) What parts of the BDI model should
host the learning mechanism (c) What is the best representative
structure or mechanism to Integrate learning within the BDI (d)
How do we engineer the environmental and internal feedbacks
into an appropriate learning mechanism (e) convergence of the
algorithm for real-time response.

We recognize that there are three distinct types of machine
learning identified in the literature: Supervised learning,
Unsupervised learning, and Reinforcement learning (RL) [17].
For the problem on hand of adaptive flight planning system, we
have chosen the last category of learning. This follows from
our observations that every flight is unique when
considerations of weather, traffic, terrain, ATC clearances are
considered. Reinforcement learning offers a promising route
since this type of learning utilizes the concept of a reward that
a system receives for the response it provides. The flight
planning system that we propose is engineered as a
composition of agents, each of which receive a reward which is
a ‘feedback’ for the system. This is used to ‘adapt’ the

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

224

behavior of the system. Therefore each agent in the adaptive
flight planning system tries to maximize the reward in trying to
find a solution for its constraint. This is in essence our basic
principle for incorporating learning into the AFPS. The
learning is incorporated on the open/closed belief sets of
waypoints in the terminal airspace. As stated earlier, we
incorporate the learning mechanism into the selection of Desire
generation process. A judicious choice of a ‘feature’ of the
environment is used to engineer the feedback mechanism. An
appropriate algorithm is chosen for real time response and
convergence.

A. Temporal Difference Learning
Temporal Difference (TD) learning algorithm [18] is

characterized by the following equations:

 sample = R (s, , s) + V (s) (1)

 V (s) = V (s) + (sample - V (s)) (2)

where R is a reward function, s S, as set of states and a
A, a set of actions that are taken in moving from one state to
another, s is the next state of s, is a policy : S A, is a
discount factor, and is the learning rate. Equation (2) is called
the update equation and updates the value of states each time a
new experience is obtained (s, a, s , r). V is a value function
that associates a value to each state.

We have chosen the Temporal Difference (TD) algorithm
for incorporating learning within our proposed Flight
Management System. The reasons for this choice are:

• TD learning is model free – where we do not know a
model (T) or reward function (R) {A model T can be
defined as T(s,a,s), where s S, as set of states and a
A, a set of actions; Reward function can be defined as
R(s, a, s). Short term weather, traffic, and terrain
(when position changes) in the terminal area are
stochastic processes and cannot have a precise model.

• The policy can be mapped to the method/plan to
satisfy the goal/desire of an agent represented by:
HDxx, MDxx, LDxx, where xx is the constraint as
noted earlier in section III B, and HD, MD, LD are
highest, moderate and lowest desire qualifiers. Each
Agent (Weather, Traffic, Terrain) uses and examines
these policies. It is desirable that each agent operate
with the best policy (optimal flight path planning).

• The value function for a policy is most appropriate,
where the exploration policy is executed to estimate
the value of states that will provide the highest value.
Our mechanization of the value function (provided in
the next section) is such that, when a temporal
difference is used, we will observe that this has an
effect of moving the state values towards whatever
successor state occurs. This running average will direct
the system towards its final goal of reaching the
terminal endpoints

• The TD algorithm converges quickly [18, 19] and is
therefore suitable for the real-time response of the
system

B. Mechanizing TD learning within BDI Agents for Adaptive
Flight Planning
In order to understand the mechanization of TD learning

algorithm within our system, we first introduce the abstract
finite state transition system model. Figure 3 shows the finite
state model abstracted from our NetLogo [15, 16]
implementation. This model exhibits predominantly Boolean
behavior that is sound with respect to the BDI model and is
used for the purposes of verification by model checking [20]
which is not discussed further in this paper.

A cycle of the system starts at the top with a check of the
flight plan and fuel sufficiency at the top (s0). A check is made
in s1 to ensure that all sensor updates (weather, traffic, and
terrain) are captured. States (s2, s3, s4, s5, s6) within the
extreme left swimlane constitute the weather agent
mechanization, while states (s7, s8, s9, s10, s11) in the middle
swimlane constitute the traffic agent mechanization, and the
states (s12, s13, s14, s15, s16) in the right swimlane constitute
the traffic agent mechanization. The function brf-Xx-Conf-
free-WPTs|t (produces the set of beliefs that indicates
waypoints that are conflict free with respect to the constraint
Xx, at time t), is associated with states s2, s7, and s12.
Similarly, the function Opf-1-Xx|t is associated with states {s3,
s4, s5}, {s8, s9, s10}, and {s13, s14, s15}. The function Opf-2-
Xx|t is incorporated with states s2, s7, s12. The function Filter-
Neg|t is associated with state s20 while function Filter-Int|t is
associated with state s22.

The central focus for this paper is the mechanization of
Opf-2-Xx|t. Each Agent evaluates a value function associated
with a desire - classified as high, moderate and low. The desire
classifications are correspondingly mapped to the requirements
of waypoint prioritization order ((Distance + Heading),
(Distance), (Heading)) mentioned in Section III B. When an
agent first finds a set of waypoints as the solution set {Beliefs-
Xx-Conf-free-WPTs}t (the set of beliefs that indicates
waypoints that are conflict free with respect to the constraint
Xx, at time t), we define the value of the states s3, s4, s5, with:

 V(s) = K1 / (||{Beliefs-Xx-Conf-free-WPTs}t||) (3)

Where

 (4)

Note that {Beliefs-Xx-Conf-free-WPTs}t, can be
segregated into three sets based on the waypoint prioritization
order (D+H, D, H) and therefore this results in generation of
{Desires-Values}t. These map to the policies 1, 2, and 3.
K1 is a constant (set equal to 100 in our experiments) and
(DIST-WPTS-RWY) denotes the distance of each of the
conflict free waypoints from the runway, considering the
constraint Xx. We then perform a summation of distances of all
such waypoints (n), the total number being denoted by NCFW.
Observe that we have used a ‘feature’ based representation,
which is a function that maps a state to a real number.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

225

Fig. 3. Terminal area adaptive flight planning problem.

Fig. 4. The mechanization of TD Learning within an Agent.

The calculation of the reward for each agent is given by:

Rt+1 = K1 / [(||{Beliefs-Xx-Conf-free-WPTs}t||) ~
(||{Beliefs-Neg-Conf-free-NAV-WPTs}t || (5)

Where {Beliefs-Neg-Conf-free-NAV-WPTs}t represents
set of waypoints found conflict free with respect to all of the
constraints, ATC cleared (navigable waypoint set)

We recognize that:

V(s) = K2 / (||{Beliefs-Xx-Conf-free-WPTs}t+1 ||) (6)

In calculating ||{Beliefs-Xx-Conf-free-WPTs}t+1||, we use
the same formula provided in (4) but the distances are
decreased by an amount that the aircraft would have travelled
in t = 1 time unit. The same arguments and propositions are
valid for states {s8, s9, s10}, and {s13, s14, s15}. The function
opf-2-Xx|t is the learning function and implements equations
(3) through (6). K2 is a constant (100 in our experiments).
Filter-Neg is a negotiation function and implemented as a
simple match and retain algorithm within Negotiation Agent.

Figure 4 shows the flowchart that outlines the complete
mechanization of the TD learning algorithm within an agent.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

226

The negotiation process starts with each agent choosing the
highest desire initially and adjusting the desire levels based on
the learning as time progresses. The values of K1 and K2 were
chosen based on the maximum distance typically represented
on STARS charts.

C. Measures for adaptibility
Our NetLogo Implementation simulates the AFPS wherein

every agent is invoked in a simulation cycle. The GUI
(Graphical User Interface) implementation provides a method
to set the ‘Availability’ of the waypoints for each constraint.
This ‘Availability’ is dynamically changed by random means,
based on a slider setting that conceptually maps to the severity
of the constraint. By this method we can make dynamic
changes in the environment related to weather, traffic and
terrain. The GUI implementation also provides an option to set
own aircraft speeds in the terminal area. Yet another option
provides the ability to switch on/off a random selection of the
terminal chosen for path navigation (Intention selection) within
the final negotiated list. We have experimented with three
implementation variations: one without the use of any form of
learning, another using the temporal difference learning; In yet
another implementation of the system, we have added another
algorithm that provides additional reinforcement learning that
uses the experience gained from episodes. An episode is one
complete run of the system from start to a terminal end point.
The method involves remembering (via writing into a file) the
shortest navigable path to the terminal waypoints after arriving
at a node. This ‘desire.txt’ file is updated after every episode to
update any of the lists (navigable strings) that need to be
changed due to discovery of new shorter paths. We have
performed multiple runs with our NetLogo Implementation of
the agent based AFPS with these different implementations.
Figure 5 below is a snapshot of the desire changes in a single
episode with TD learning and the associated code snippet
showing Opf-2 implementation (Wx Agent).

Fig. 5. The NetLogo Implementation

In order to answer questions that we posed in Section II A,
we analyzed the experimental data which recorded the aircraft
speed, weather condition, terrain condition, ATC clearance, the

values of K1, K2, , and . The important output measures of
Time Ticks of simulation (leading to time of flight), Distance
travelled by the aircraft was also recorded. The following
measures are proposed to answer the question related to benefit
(performance) in the context of usage of learning within the
system:

Measure of Cooperative Gain 1 = Time to complete an
episode without Learning / Time to complete an episode
with Learning (7)

Measure of Cooperative Gain 2 = Distance travelled to
complete an episode without Learning / Distance

travelled to complete an episode with Learning (8)

Measures in equations (7) and (8) provide a simple way to
quantitatively answer questions on performance and efficiency
of a learning algorithm (denominators in equations (7) and (8)
will have different values for different learning algorithms).

In order to analyze how the system is adapting to changes, the
following measures are proposed

Coeff. of Cooperation for an Agent (for an episode) =

[(Highest Desire Level * Time ticks) - (Instantaneous
Desire Level * Time ticks)] / (Highest Desire Level *

time ticks) (9)

Relative Coeff. of Cooperation (between agents M,N
for an episode) =

Coeff of co-operation for an Agent M / Coeff. of co-
operation for an Agent N, M N (10)

The ‘Desire Level’s are numerically provided values of 1,
2, and 3 corresponding to the lowest, moderate and highest
desires that we have described in Sections III B and V B.
Measures in equations (9) and (10) are examined in the context
of varying , , and most importantly, availability. Equation (9)
provides a measure for the amount of adjustment that an agent
had to accommodate in its desire level. This can be easily
understood from Figure 6. The diagram shows how an agent
that initially operates at the highest level, lowers its desire level
to operate at the moderate desire level t1, holds the desire level
until t3 whereupon it lowers it further down and at t4, it raises
to the highest desire level. Considering time until t4, we see
that the co-operation offered by this agent is directly
proportional to the area under the instantaneous desire level.
Therefore, over a sum period of time, this can be expressed as
the ratio of the area under the instantaneous desire level to that
under the idealized highest desire level

Fig. 6. Coefficient of co-operation

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

227

Having obtained a measure for an individual agent, it is
cogent to propose a measure (equation (10)) that compares co-
operation between a pair of agents. This provides a quantitative
measure of the amount of mutual co-operation that exists
relative to the disturbances in the environment for an episode
and helps compare the learning algorithms. In our initial Monte
Carlo type experiments for 67 episodes, we captured
experimental data for which K1 and K2 were set to 100, , and
 were each set to 0.9. The availability of waypoints in the

STARS chart (Figure 1) for each constraint (weather, traffic,
and terrain) was varied from 100% (always available) to 55 %
(half available). Our NeLogo implementation also has built in
the functions to record the number of time ticks, and compute
the distance travelled, and the individual coefficients of co-
operation for each episode. The results were populated into a
spreadsheet and the relative coefficients of cooperation for
each pair of agents was computed and tabulated. Table I shows
the summary of our experimental results.

TABLE I. EXPERIMENTAL RESULTS FOR PROPOSED MEASURES

Measures for Adaptability
Measure Mean Value Standard Deviation

Coeff. of Cooperation –
TD Learning

0.294 (Wx Ag)
0.287 (Tr Ag)
0.278 (Te Ag)

0.141 (Wx Ag)
0.139 (Tr Ag)
0.135 (Te Ag)

Coeff. of Cooperation –
TD Learning + Add RL
Learning

0.282 (Wx Ag)
0.281 (Tr Ag)
0.265 (Te Ag)

0.118 (Wx Ag)
0.124 (Tr Ag)
0.124 (Te Ag)

Relative Coeff. of
Cooperation – TD, ADD
RL

1.097,1.059(Wx/Tr)
1.121,1.36 (Wx/Te)
1.13,1.393(Tr/Te)

0.51,0.33(Wx/Tr)
0.50,1.73(Wx/Te)
0.59, 2.06(Tr/Te)

Cooperative Gain 1 & 2 -
TD

2.99 (G1)
2.99 (G2)

7.16 (G1)
7.16 (G2)

Cooperative Gain 1 & 2 –
TD + Add RL Learning

4.42 (G1)
4.42 (G2)

13.579 (G1)
13.579 (G2)

Fig. 7. Coefficient of co-operation plots

The left hand side of Figure 7 shows the plots of coefficient
of co-operation (Y-axis) against Availability (X-axis) of
terminals (constraints of weather, traffic, and terrain).
Interpreting these plots, we arrive at the conclusion that we can
obtain about 30% co-operation from every agent on the
average. Maximum co-operation of about 60% is when the
availability of terminals is high (85-100%) i.e, when the
terminals are not heavily constrained. Minimum co-operation
of about 10% is obtained when the availability of terminals is
low (55%) i.e, when the terminals are heavily constrained. The
right hand side of Figure 7 shows that the Coefficient of co-
operation follows a normal distribution and the specific values
are tabulated in Table 1.

Figure 8 provides a plot of time taken to reach the final
waypoint versus the test case number. We progressively
decreased the terminal availability with increasing test case
numbers. The plot with highest peak indicates the case where
no learning was employed and the other plot indicates the one
where TD learning was employed. The initial test cases show
conditions where availability was high. The terminal
availability drops to 90% at test case 13, to 75 % around test
case 25, to 67% around test case 40, and to 60% around test
case 40, and finally to 55% around test case 67. We see that as
the terminal availability decreases, the time taken to reach the
final waypoint shows significant decrease for TD learning.

Fig. 8. Co-operative Gain plots

We see from the recorded experimental data from Table I
that gain of 3 is obtained for the TD learning case while a gain
of 4 is obtained for the case where additional reinforcement
learning was added. Similar results were obtained when the
distance travelled to reach the final waypoint versus the test
case number was plotted.

VI. RELATED WORK
Work in the area of adaptive flight path/trajectory planning

has been continuously evolving. We present and contrast our
work with other important work in this area. AGENTFLY is a
simulation platform that can simulate UAVs (unmanned Aerial
Vehicles) and uses the free flight concepts [21]. The base is a
modified A* algorithm. Path Planning is done in two phases:
spatial and time planning. Our work differs in the fact that we
integrate both of them in a single cycle. [22] is a recent

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

228

publication on the use of adaptive path planning for UAVs
using bi-level planning in place of real-time adaptive path
planning and variable planning step techniques to build paths
or new reference waypoints only when necessary. Our work
differs from the fact that we do not anticipate the kind of
performance variations that take into account the ownship
performance variations; Also objectives are setup to adapt the
flight path using a hierarchical principal-subordinate
relationship – the leader’s objective is to converge by
providing a holistic trajectory while the follower optimizes
locally – we can see a similar pattern in our work. [23] is a
fairly recent treatise on generation of safe and reliable
trajectories using hierarchical motion planning, in which
trajectory generation and optimization is decomposed into two
layers: geometric layer and dynamics layer. Our work, though
focused on both these aspects, does not separate them, but
incorporates both concepts within a single agent. Specifically,
multi-resolution motion planning using wavelet-based cell
decompositions has been shown to be efficient. The work
represents the environment as a graph – we use a list. The
trajectory generation uses an H-Costs algorithm with a discrete
path planner that lifts partial graphs to satisfy constraints. Our
arrangement of individual agents with the negotiation agent
provides a similar effect in generating the total solution. [24]
presents an adaptive trajectory planner for emergency landing
scenario, using planning and reactive agents. The adaptive
trajectory planning is built into the planning agent using three
agents ‘Pilot’, ‘Hybrid’ , and ‘FMS Agent’ which use rule
based approaches. We employ a more loosely coupled and
generic approach in contrast. The use of RL in safety critical
systems is provided in [25].

VII. CONCLUSION AND FUTURE WORK
Our work in formulating and simulating the Adaptive

Flight Planning System with agents, has demonstrated how
“Learning” could be introduced for an avionics domain
application. During the initial stages we captured
specifications particularly related to adaptability and learning
for the system with intent to provide later the algorithms and
methods to ensure safety, timeliness and deterministic aspects
of the domain. Therefore ensures a means to articulate the
system better for design transformation for the learning
method. The choice of using Reinforcement Learning (TD)
with reasoning and experimental results is provided. This work
clearly shows how learning provides significant benefits
(cooperative gains of 3 to 4.5 times). Also measures to
characterize and analyze the system are proposed along with
experimental data. We are carrying out further research
towards formulating similar frameworks and their verification
with aspects of safety, determinism, and realtimeliness in
focus.

REFERENCES
[1] Ashley Aitken, Vishnu Ilango, “A Comparative Analysis of Traditional

Software Engineering and Agile Software Development”. 46th Hawaii
International Conference on System Sciences, 2013, IEEE Computer
Society, DOI 10.1109/HICSS.2013.31.

[2] Richard Stocker, Neha Rungta, Eric Mercer, Franco Raimondi, Jon
Holbrook, “An Approach to Quantify Workload in a System of Agents”,

Proceedings of the 14th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2015), Istanbul, Turkey.

[3] Mahdi Bashari and Ebrahim Bagheri, “Engineering self-adaptive
systems and dynamic software product line”, SPLC '13 Proc. 17th
International Software Product Line Conference, Tokyo, Japan, 2013.

[4] Mazeiar Salehie, Ladan Tahvildari, “Self-Adaptive Software: Landscape
and Research Challenges”. ACM Transactions on Autonomous and
Adaptive Systems, Vol. V, No. N, March 2009.

[5] Yuriy Brun. et al., “Engineering Self-Adaptive Systems through
Feedback Loops, Self-Adaptive Systems”. LNCS. 5525 (2009), pp. 48–
70 , Springer-Verlag Berlin Heidelberg, 2009

[6] N. R. Jennings and M. Wooldridge, “Applications of Intelligent
Agents”, In Agent technology, Pages 3-28, Springer-Verlag,USA, 1998.

[7] Anand S. Rao and Michael P. George, “BDI agents: From theory to
practice”. In Proceedings of the First International Conference on
Multiagent Systems (San Francisco, USA, June 12-14, 1995.

[8] Alejandro Guerra-Hernandez, Amal El Fallah-Seghrouchni, and Henry
Soldano, “Learning in BDI Multi-agent Systems”. Proceedings of
CLIMA 2003. Springer Verlag, 2004.

[9] Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Geoff James.
“Integrating learning into a BDI age.nt for environments with changing
dynamics”, IJCAI 2011,p 2525-2530

[10] Dhirendra Singh, Sebastian Sardina, and Lin Padgham, “Extending BDI
plan selection to incorporate learning from experience”. Journal of
Robotics and Autonomous Systems, 2010.

[11] Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., Engstrom,
“Certification considerations for adaptive systems”. NASA Report,
NASA/CR–2015-218702, Langley Research Center, USA. March 2015.

[12] Gratch, J., DeJong, G. “A Statistical Approach to Adaptive Problem
Solving”, Artificial Intelligence, Vol. 88, Iss. 1-2, Decr 1996.p. 101-142.

[13] RNAV-I (GNSS/DME/DME/IRU) SIDs and STARs, Chennai
International, India, website: www.aai.aero/public_notices/29-2009.pdf

[14] Mark d'Inverno, Michael Luck, Michael P. George, David Kinny, and
Michael Wooldridge. 2004. The dMARS architecture: A specification of
the distributed multi-agent reasoning system In AAMAS, 2004.

[15] NetLogo multi-agent programmable modeling environment,
https://ccl.northwestern.edu/netlogo/.

[16] Uri Wilensky and William Rand. “An Introduction to agent-based
modeling: Modeling natural, social and engineered complex systems
with Netlogo”. MIT Press, 2015.

[17] K.-L. Du and M. N. S. Swamy. 2014. “Fundamentals of Machine
Learning”, Chapter 2, In Neural Networks and Statistical Learning.
Springer-Verlag London, 2014, DOI: 10.1007/978-1-4471-5571-3_2.

[18] Richard S. Sutton and Andrew G. Barto. 2005. “Temporal-Difference
Learning”, Chapter 6, In Reinforcement Learning: An Introduction. MIT
Press, 2005.

[19] Ferenc Beleznay, Tamas Grobler, Csaba Szepesvari, “Comparing Value-
Function Estimation Algorithms in Undiscounted Problems”, Technical
Report TR-99-02, MindMaker Ltd, 1999.

[20] Rajanikanth N Kashi, Meenakshi D’Souza, S Kumar Baghel, Nitin
Kulkarni, “Formal verification of avionics self adaptive software: A case
study”, ACM India Software Engineering Conference 2016, Goa, India.

[21] David Sislak, Premysl Volf, Michal Pechoucek, “Flight Trajectory Path
Planning”, http://www.rtca.org/

[22] Wei Liu, Zheng Zhenga, Kaiyuan Caia, “Adaptive path planning for
unmanned aerial vehicles based on bi-level programming and variable
planning time interval”, Chinese Journal of Aeronautics, 2013.

[23] Panagiotis Tsiotras, Eric Johnson, “Advanced Methods For Intelligent
Flight Guidance and Planning In Support Of Pilot Decision Making”,
Report, Intelligent Systems Division, NASA Ames Research, 2012.

[24] Igor Alonso-Portillo, Ella M. Atkins, “Adaptive Trajectory Planning for
Flight Management Systems”, AIAA Aero Sciences Conference, 2002

[25] Clement Gehring, Doina Precup, “Smart Exploration in Reinforcement
Learning using Absolute Temporal Difference Errors”, AAMAS 2013.

2016 Intl. Conference on Advances in Computing, Communications and Informatics (ICACCI), Sept. 21-24, 2016, Jaipur, India

229

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

