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The study of complex systems has been highlighted in recent science education
policy in the United States and has been the subject of important real-world sci-
entific investigation. Because of this, research on complex systems in K—12 sci-
ence education has shown a marked increase over the past two decades. In this
systematic review, we analyzed 75 empirical studies to determine whether the
research (a) collectively represents the goals of educational policy and real-
world science, (b) has considered a variety of settings and populations, and (c)
has demonstrated systematic investigation of interventions with a view to scale.
Results revealed needs in five areas of research: a need to diversify the knowledge
domains within which research is conducted, more research on learning about
system states, agreement on the essential features of complex systems content,
greater focus on contextual factors that support learning including teacher learn-
ing, and a need for more comparative research.

Keyworps:  complex systems, science education, student and teacher learning

In Science for All Americans (American Association for the Advancement of
Science, 1989), and the subsequent Benchmarks for Scientific Literacy
(American Association for the Advancement of Science, 1993), the topic of sys-
tems occupied a prominent role as one of the four common themes driving sci-
ence learning in U.S. K—12 education. Since then, science education researchers
have focused on constructing and testing methods for teaching and learning
about systems, with an emphasis on complex systems (Hmelo-Silver & Azevedo,
2006; Sabelli, 2006; Wilensky & Jacobson, 2015; Yoon, in press). Although this
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research has resulted in a number of new digital tools, curricula, and theoretical
frameworks, it has not generated consensus on how best to support student
learning. With the recent launch of the Next Generation Science Standards
(NGSS Lead States, 2013), there is a similar emphasis on systems learning,
except that the processes fueling systems, such as energy and matter, are also
included as important crosscutting concepts. Such concepts are understood to
apply to all the content domains encompassed in the NGSS as core ideas in the
Physical, Life, and Earth and Space Sciences as well as Engineering, Technology,
and Applications of Science.

As we work to translate the NGSS into curricular experiences for all students,
understanding the kind of empirical research that has been done on complex systems
in the past would be helpful to determine how best to support classroom learning.
Given that systems and their processes are crosscutting concepts, it would be prudent
to understand how robust the literature base is in terms of the content domains repre-
sented as well as the utility of that content. Similarly, understanding how diverse the
research base is with respect to populations it has studied can help us understand
whether learning outcomes can be attributed to a majority of students. Finally, for
educational resources to be adopted at scale, the reliability of methods should be
examined in the research that purports to support improved learning.

We begin this article by defining concepts in the study of complex systems
that are central to understanding how they exist and function. The section that
follows outlines NGSS teaching and learning goals and recent educational poli-
cies that identify systematic frameworks that should be considered when evaluat-
ing curricula, resources, and practices that have the potential to be scaled up and
that represent real-world scientific inquiry. Next, we describe our methods for
narrowing down and reviewing empirical studies of complex systems in science
education (CSSE). A review of the empirical studies follows. We conclude with
recommendations for classroom learning and directions for future research.

What Are Complex Systems?

The study of complex systems can be summarized as understanding how behav-
ior of phenomena at different scales is related and how larger scale patterns emerge
from the interdependent components at lower scales (Bar-Yam, 2016). By studying
the patterns that emerge and the interactional processes that lead to these patterns,
researchers can better understand how systems adapt, self-organize, fluctuate, and
reach and maintain equilibrium. Scientists and engineers have for a long time been
interested in investigating structures, dynamics, and states of complex systems that
can be applied to real-world problems. For example, in a recent conference, the
National Academies amassed a multidisciplinary group of leading American com-
plexity researchers to examine nine pressing global issues. These included ecologi-
cal robustness (whether the biosphere is sustainable), enhancing robustness through
interconnectivity (e.g., power grid structures, disaster relief networks), and how to
exert control on the spread of disease (The National Academies, 2009). The goal of
this work was to identify the limits, optimal states, and weaknesses within systems
such that interventions could be applied to enhance stability in the face of perturba-
tions. Solving these issues, as many of the researchers admitted, is challenging
given the nonlinear, stochastic or random, and decentralized nature of complex
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systems. Here, and in complexity organizations such as the Santa Fe Institute and
the New England Complex Systems Institute, researchers are interested in develop-
ing visual and mathematical models (e.g., Servedio et al., 2014) that can help
describe and predict various systems states as well as the dynamics that fuel them.
Optimization, resilience, and robustness are conditions that complexity researchers
study and model for utilitarian purposes (e.g., Allison & Martiny, 2008; Caschera et
al., 2011; Levin & Lubchenko, 2008).

In terms of content, complex systems researchers represent a multitude of
scientific knowledge domains, including physics (e.g., Fuentes, 2014;
Sherrington, 2010), chemistry (e.g., Hordijk, Kauffman, & Steel, 2011), biol-
ogy (e.g., Sah, Singh, Clauset, & Bansal, 2014), and ecology (e.g., Bettencourt
& Brelsford, 2014; Sole, 2015). Complex systems researchers also recognize
the universal nature and intersectionality of systems within different domains
and seek to highlight this universality and reveal underlying principles that
unite them (West, 2014). Although a close cousin, this review does not include
studies in the field of systems dynamics that focus on macro-level systems
functions (typically of engineered systems) and generally aim to quantitatively
track the rate of flow of resources to optimize whole system efficiencies (e.g.,
Forrester, 1994). Similarly, it does not include studies of dynamic systems,
which hail from the field of developmental psychology and focus mainly on
identifying the dynamics occurring within and between individual actors that
support or constrain mental and behavioral growth (e.g., Lewis, 2000; Thelan
& Smith, 1994).

NGSS Teaching and Learning Goals

Emphasizing the utility of science learning and how scientists come to under-
stand and apply their research is a central focus of the Framework for K12 Science
Education (National Research Council [NRC], 2012) that underpins the NGSS.
The vision states,

The learning experiences provided for students should engage them with fundamental
questions about the world and with how scientists have investigated and found answers
to those questions.

We anticipate that the insights gained and interests provoked from studying and
engaging in the practices of science and engineering during their K12 schooling should
help students see how science and engineering are instrumental in addressing major
challenges that confront society today, such as generating sufficient energy, preventing
and treating diseases, maintaining supplies of clean water and food, and solving the
problems of global environmental change. (p. 9)

We can see here that the NGSS vision for science education maps well onto the
research that complexity scientists are undertaking in terms of solving problems
confronting society and the environment.

With respect to specific content involving systems in the NGSS, arguably
all crosscutting concepts bear some relationship to the study of complex sys-
tems. To review just three—concepts of scale, proportion, and quantity relate
to the importance of recognizing what is relevant at different measures of size,
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time, and energy and how changes in scale, proportion, or quantity affect a
system’s structure or performance. For example, to understand the complexity
of a particulate system, it is important to recognize that at the component level,
particles in a gas system move in straight lines, collide with one another, and
alter their speed and direction of motion. Changes in these behaviors such as
the number of particles, the energy of particles, and the frequency of collisions
can affect the system’s outcomes such as energy transfer, random motion of
particles, and diffusion.

Concepts of systems and system models include examining the system in detail
to determine system interdependencies and recognizing the fact that properties
and behaviors that exist at a system level may be different from the lower level
interactions from which they emerged. In addition, these system level properties
and behaviors are often difficult to predict from knowledge about the components
and their interactions (NRC, 2012, p. 92). Concepts in this category illustrate core
complex systems concepts of interdependence, emergence, and self-organization,
among others (cf. Jacobson, 2001).

Concepts of stability and change emphasize static and dynamic equilibrium
over various time scales, and feedback loops. To understand complex systems,
one must be able to recognize conditions in which aspects of a system are chang-
ing or not, and these can be dependent on the time span during which the observa-
tions are made (Booth-Sweeney & Sterman, 2007). The mechanisms of feedback
loops in a system also serve to regulate processes and maintain or destabilize the
system (Gotwals & Songer, 2010).

Another important challenge articulated in the framework is the need for an
inclusive science education that offers equal opportunities for all students to
experience high-quality learning experiences. Other policy documents have
similarly highlighted goals for a more authentic and current science curriculum
in K-12 and instructional practices that reach a diversity of learners in diverse
settings (National Science Board, 2010; NRC, 2011; President’s Council of
Advisors on Science and Technology, 2010). Addressing such details in class-
room teaching and learning is not an easy task, however, particularly because
the NGSS represents a new vision for science education—one that differs from
typical learning activities in U.S. classrooms (Wilson, 2013).

What we aim to determine in this review is whether complex systems research
in education similarly reflects the research aims of real-world scientific investiga-
tion and the NGSS teaching and learning goals.

Scaling Research and Innovations

The development of classroom resources that can be adopted at the scale
intended for NGSS should go through a number of steps and evaluations. Recently,
the Institute of Education Sciences (IES) and the National Science Foundation
(NSF) in the United States outlined a continuum of methodological levels that
influence increased reliability of intervention outcomes at scale (IES/NSF, 2013).
The continuum delineates six types of research beginning with foundational and
early-stage or exploratory research working with single and ideal populations and
ending with scale-up research in which findings can generalize to multiple
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populations with attention to situated mediators (a description of the stages of
research appears in a later table). Determining how the corpus of educational
research in complex systems fares against these categories of research and devel-
opment can offer information about the reliability of research findings that are
intended to support student learning.

Other recent frameworks aimed at producing reliable outcomes that can scale
to many populations and educational contexts emphasize a need to consider situ-
ated variables such as population and context. Design-based implementation
research focuses on designing and testing interventions across different levels and
settings of learning (Penuel & Fishman, 2012). This framework suggests that
there should be a commitment to an iterative design cycle, attention to particular
learner responses, and the development of infrastructures that sustain change. The
Carnegie framework for improvement science similarly focuses on building inter-
ventions that scale via evidence collected from a variety of educational situations
that address variation in performance and system variables that influence it (Bryk,
Gomez, & Grunow, 2010; Bryk, Gomez, Grunow, & LeMahieu, 2015). Of central
importance to our review here is whether complex systems research in education
has tested interventions with consideration to context diversity.

Purpose of the Review

The purpose of this review is to examine the research conducted on CSSE from
1995 to 2015. The year 1995 was selected as the starting point because the bulk of
interventions and scholarly work emerged after the publication of the Benchmarks

for Scientific Literacy (American Association for the Advancement of Science,
1993) where, as previously noted, the concept of systems was prominently fea-
tured. We also assumed a need to allow a 2-year period for interventions to be
constructed, implemented, and reported.

We are interested in investigating how the corpus of CSSE research addresses
real-world complex systems research and applications, fulfils NGSS intended stan-
dards and goals, and can be scaled to support all students. The research questions
underpinning the review are as follows:

e To what extent does CSSE research represent the state of complex systems
research and the NGSS standards and goals?

e To what extent has CSSE research been conducted in a variety of educa-
tional settings with a variety of populations?

e To what extent has CSSE research demonstrated systematic investigation
in terms of methods toward scaling interventions?

We highlight themes that emerge from this group of studies that illustrate areas of
robust research emphasis such as particular content domains, conceptual foci, or
methodologies. We also highlight what the research says about concepts that are
more or less challenging for students to learn and concepts that the field should
investigate in terms of what students know and how to support learning. It is
important to note, however, that a meta-analysis of student learning outcomes is
outside of the scope of this review.
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Method
Literature Search Procedure

This systematic review focused on peer-reviewed empirical articles in the field
of science education. Articles for review were selected through the following
method. First, we defined the keywords needed to search for complex systems
articles. These keywords are: (a) complex systems; (b) system, science education;
and (3) complexity. Using these keywords, we performed three different searches
with each of the keywords in three different databases: Education Resources
Information Center (ERIC), Education Full Text, and PsycINFO. We selected
these databases because they are the most commonly used ones for educational
studies and previous published review articles with similar content have used
these databases (e.g., Gerard, Varma, Corliss, & Linn, 2011). Table 1 shows that
from this first-level search, there was a large number of hits from each of the
databases. Using the inclusion criteria discussed below, one of the authors studied
the titles of the articles as well as skimmed the abstracts, over a 3-month period,
to yield the numbers extracted in the last column of the table. This number equaled
a total of 234 articles. When the research team examined the results of the first
level of extraction, we were concerned that with such large numbers, human error
may have caused some articles to be missed that could be germane to the study.

To ensure that all empirical educational articles were selected, we performed
another level of systematic review with a finer grained search on ERIC. We chose
ERIC as the single database to perform this search because it yielded the largest
number of hits in the first level. In this second level, we first searched for the
keywords of system AND scien*. We then included another level with the follow-
ing keywords: (a) complex*, (b) decentral*, (c) emergen®, (d) causal*, (e) nonlin-
ear®, and (f) self-organi*. An asterisk (*) was used in order to include all plural
versions of each of the keywords in the searches. The first-level keywords were
used in every search, and one keyword from the second level was used for each
individual search. For example, the first search was “system AND scien* AND
complex*,” and the next search was “system AND scien* AND decentral*,” and
so on. For the second-level search, both the title and abstracts were examined for
inclusion criteria, which yielded 130 articles for a total combined first- and second-
level search of 364 articles. See Table 1 for the detailed search string results.

Inclusion Criteria

For the literature that resulted from each search, inclusion criteria were also
used to narrow the pool of relevant research. The inclusion criteria included stud-
ies that (a) encompassed K—12 science education and (b) were focused on empiri-
cal studies on teaching and learning about complex systems. For those hits for
which the inclusion criteria fit was dubious, the article was examined by one or
both of the other authors. The resulting extracted articles were also examined by
the other two authors to verify inclusion in the final data set. After checking for
duplicates across the two levels of extraction, we identified 203 different studies.

Exclusion Criteria

On more detailed examination of the 203 empirical studies, we recognized that
there were some studies that did not focus on the teaching and learning of complexity
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TABLE 1

Articles extracted: database, search strings, number of hits, and number extracted after
inclusion criteria applied

No. of No.
Level  Database Search string hits  extracted
Level 1 ERIC complex systems 247 48
system, science education 2,273 37
complexity 7157 20
Education Full Text complex systems 255 31
system, science education 1,288 23
complexity 5,419 14
PsycINFO complex systems 1,901 28
system, science education 3,097 24
complexity 3,190 9
Total 234
Level2 ERIC system AND scien* AND complex* 787 106
system AND scien* AND decentral* 32 2
system AND scien* AND emergen* 210 10
system AND scien* AND causal* 79 6
system AND scien* AND nonlinear* 50 3
system AND scien* AND self-organi* 39 3
Total 130
Total extracted 364

in systems. For example, a number of studies investigated the use of computational
tools in learning science (e.g., Azevedo, Cromley, & Winters, 2005; Azevedo, Moos,
Greene, Winters, & Cromley, 2008; Azevedo, Winters, & Moos, 2004; Ioannidou et
al., 2010; Parnafes, 2010). Other studies focused on instructional strategies such as
collaborative learning and self-regulated learning to learn science (e.g., Brady,
Holbert, Soylu, Novak, & Wilensky, 2015; Greene, Moos, Azevedo, & Winters,
2008; Randler & Bogner, 2009). Although the topics of these studies were related to
systems, for example, exploring differences in student use of self-regulatory strategies
when learning about circulatory systems (Greene et al., 2008), since they did not
examine the learning and teaching of the complexity associated with the system, they
were taken out of our systematic review. Subsequently, we were left with a total of
75 studies (see Table 2 for a list of the studies).

A distribution of the 75 CSSE research studies aggregated in 5-year inter-
vals between 1995 and 2015 is shown in Figure 1. The graph shows an
increasing trend in which the publication rate roughly doubled every 5 years.
These studies were most commonly featured in Journal of Research in
Science Teaching (10), International Journal of Science Education (9),
Journal of Science Education and Technology (9), and Journal of the
Learning Sciences (6).

(Text continued on page 300)
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*2010-2015 is a 6-year period in which eight CSSE articles were published in 2015.

FIGURE 1. Number of CSSE publications over the past 20 years. CSSE = complex
systems in science education.

Data Analysis

This section describes the analyses performed to address each research ques-
tion and is therefore divided into three sections. When interrater reliability is
reported without extenuating explanatory details, it should be understood that
agreement was obtained between the first two authors.

To What Extent Does CSSE Research Represent the State of Complex Systems
Research and the NGSS Standards and Goals?

An analysis of the science subjects and the complex systems concepts con-
tained in each study can provide insight into the extent to which CSSE research
represents the state of complex systems research in science as well as NGSS stan-
dards and goals. Table 3 shows the categorization scheme for science subjects and
complex systems concepts.

The CSSE studies focused on the teaching and learning, or understanding, of
scientific systems that are complex in nature. These scientific systems are found
in myriad knowledge domains. We identified seven common domains or content
areas, that is, biology, chemistry, computer science, earth science, ecology, phys-
ics/physical science/engineering, and complex systems in general. Some studies
were coded for more than one content area due to the interdisciplinary topics they
covered. Interrater reliability was completed on 20% (16) of the 75 articles with
adequate agreement between the authors (kappa = 0.7; Landis & Koch, 1977).
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TABLE 3
Categorization scheme for science content and complex systems concepts
Aspect Guiding question Codes and other remarks
Science Which content area * Biology
content was the study ¢ Chemistry
situated in? - Computer science
+ Earth science
* Ecology

* Physics/physical science/engineering
*  Complex systems in general

Complex What complex Structures
systems systems 1. Levels/aggregates/scale
characteristics  characteristics 2. Number and names of variables
were included in 3. Connections
the focus of the 4. System organization (linear vs. nonlinear)

9
research? 5. Inputs/outputs or initial conditions

Processes
6. Interdependence/relationships
7. Self-organization
8. Emergence
9. Causality (feedback, cycles)
10. Perturbations
States
11.  Equilibrium/stability
12. Decentralized
13. Random (order, variations, fluctuations)

Disagreements about the science content of the studies were resolved after
discussion.

Constructing a categorization manual to code complex systems characteris-
tics was more challenging due to the different phrasing of processes and struc-
tures among the studies. We decided to use a qualitative content analysis
approach in which clearly defined categories were developed inductively
(Mayring, 2000). The first two authors read and coded 10 studies to identify an
initial set of concepts that the authors of the articles themselves used to describe
the complex systems characteristics investigated in their respective interven-
tions. The characteristics were then discussed and revised, after which another
10 articles were coded. A preliminary framework of complex systems charac-
teristics was constructed and further elaborated on throughout the process.
Studies could be coded as including multiple relevant complex systems charac-
teristics. The two authors then coded the rest of the articles separately and
discussed the codes. Any discrepancies in the codes were resolved after several
rounds of negotiation.
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Finally, a framework was completed comprising three macro categories (i.e.,
structure, processes, and states) within which 13 complex systems concepts were
embedded (see Table 3). These superordinate categories are often referred to in
descriptions of differences between complex systems approaches and linear
approaches when describing the world. For example, Mitchell (2009) writes that
traditionally, science has often adopted a linear and reductionist approach, focusing
on “breaking down” these systems to their components for analysis of their behav-
iors. While this approach simplifies the learning, it does not do justice to the multi-
ple interactions among the components and interrelationships within the system,
which give rise to systemic properties and patterns (Capra, 1996). We interpret the
notion of ‘system components’ as referring to system structures. The notions of
“multiple interactions” and “interrelationships” refer to processes that fuel systems;
giving “rise to systemic properties and patterns” pertains to emergent states.

In our framework, Structure characteristics refer to the physical features of
the system, including micro and macro levels or different scales, the number
and names of variables, how the variables are connected and the number of con-
nections, the system organization (whether it is linear or nonlinear), and inputs
and outputs or initial conditions. There are five complex systems characteristics
related to the structure category. Process characteristics refer to the dynamics
and mechanisms that fuel complex systems evolution. These include how the
variables in the system are interdependent or form relationships, the processes
of self-organization and emergence, the causal nature of processes such as feed-
back and cycles, and perturbations that trigger shifts in system structures and
dynamics. There are also five complex systems characteristics related to pro-
cesses. States characteristics refer to how complex systems exist in the world as
a result of shifts or due to existing structures and processes. Three complex
systems characteristics of states were identified in the studies.

To What Extent Has CSSE Research Been Conducted in a Variety of Educational
Settings With a Variety of Populations?

Analysis of the demographics of research participants in the various studies
provided insight into the extent to which CSSE research has been conducted in a
variety of educational settings. Three aspects of demographic information com-
monly provided in peer-reviewed articles were examined. The first was what kind
of population participated in the study with respect to students and/or teachers and
also the grade range of the students (elementary, middle or high school) and the
experience level of the teachers (preservice or in-service). In studies where stu-
dent ages were given instead, the grade levels were deduced from the given ages.
The final two categories included were the gender and the race and ethnicity of
the study population. The U.S. basic categorization for races and ethnicities
(Office of Management and Budget, 1995) was used to code the race and ethnicity
composition in the sample.

While the information was relatively easy to extract with little ambiguity,
interrater reliability was still performed on 20% of the articles with very agree-
ment (kappa = 0.85 — 0.9; Landis & Koch, 1977) for all four demographic dimen-
sions. If no information was provided in the article on a particular demographic
aspect, it was duly noted. Table 4 describes the details of the coding of the demo-
graphic information.
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TABLE 4

Categorization scheme for demographics of research participants

Aspect Guiding question Codes and other remarks

Target group What student and/ or  Student groups were coded according to the

teacher group(s) is following levels

the study targeting? « Elementary (Grades K—6)
* Middle school (Grades 7-8)
* High school (Grades 9-12)
Teacher groups were coded as follows
» Preservice (prior to certification)
+ In-service (after certification)

Gender What is the gender * Male
composition of the « Female
study?
Race and What is the ethnicity The U.S. basic categorization for races and
ethnicity of the sample? ethnicities was used (Office of Management

and Budget, 1995)

* American Indian or Alaska Native

» Asian or Asian American

* Black or African American

* Native Hawaiian or Other Pacific Islander

*  White

» Latino/Hispanic

Studies that indicated multiple races and eth-
nicities were coded as “diverse.”

To What Extent Has CSSE Research Demonstrated Systematic Investigation in
Terms of Methods Toward Scaling Interventions?

Analysis of the research contexts, methodologies, and purposes can pro-
vide insight into the extent to which CSSE research has demonstrated sys-
tematic investigation in the past 20 years. Specifically, we examined the
research setting, school type (if it was conducted in a school), sample size,
research methods, and the research and educational purposes of the study.

Research setting refers to where the study was conducted, for example, in a
classroom, an informal learning environment (e.g., museum and summer camp),
or a laboratory setting.

School type refers to the kind of schools the sample was taken from for studies
conducted in a classroom setting. They were coded as public (mainstream), pub-
lic (charter or special target), or private schools.

Sample size refers to the number of participants involved in the study. If a
study included two samples, the larger of the two sample sizes was documented.
Such cases are also noted in Table 2.

Research method refers to the sources of information that were used, how
the information was sampled, and the types of instruments that were used in
data collection. This review largely coded the studies based on the type of data
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collected—qualitative, quantitative, or mixed methods. Studies coded as qual-
itative research included case study, ethnography, grounded theory, narrative,
and phenomenological research, while studies coded as quantitative included
experimental, quasi-experimental, and nonexperimental. Mixed-methods
studies were those that include both qualitative and quantitative research
methods.

Research aim refers to whether the study was early-stage exploratory
research, design and developmental research, or efficacy and scale-up research.
This coding was adapted from the IES/NSF (2013) classification of
educational research.

Finally, the educational purpose refers to the dimension of CSSE investi-
gated in the study. For example, did the study examine student or teacher learn-
ing as part of an intervention, or was the research conducted to determine
existing levels of complex systems understanding? The six CSSE dimensions
were first constructed by one of the authors after reading through half of the
articles. The dimensions were subsequently discussed and refined among the
three authors. Interrater reliability was also completed on 20% of the articles
with respect to this category (that were not reviewed for the construction of the
coding scheme) with substantial agreement obtained (kappa = 0.65-0.8; Landis
& Koch, 1977).

Further details about the categorization schemes for research contexts, meth-
odologies, and purposes appear in Table 5.

Results
Representations of Complex Systems Research

Science Content Areas

Figure 2 shows the distribution of content areas represented in the group of
CSSE studies. Ecology and biology were the most commonly coded content areas,
with 38 studies (51%) and 24 studies (32%), respectively. Within these content
areas, topics of investigation ranged from environmental issues and ecosystems to
human body systems and genetics. The content area of earth science was repre-
sented in eight studies (11%) with smaller numbers coded in the remaining content
areas. Nineteen studies (25%) were coded in more than one content area.

Complex Systems Characteristics

A total of 185 complex systems characteristics were coded as target learning
content in the CSSE studies we reviewed. The distribution of complex systems
characteristics coded in the categories and subcategories can be found in Figure 3.
Of the total number of complex systems characteristics, 86 (46%) were coded in
the Structures category. Another 79 (43%) were coded in the Processes category,
and just 20 (11%) were coded in the States category. Among the subcategories, the
highest frequency of complex systems concepts appeared in Interdependence/
Relationships, which was coded in 33 (18%) of studies. The subcategories with
the next highest frequencies were Connections (coded in 27, or 15%, of studies)
and Levels/Aggregates/Scale (coded in 25, or 14%, of studies). Relatively low
numbers appeared in the subcategories of Inputs/Outputs or Initial Conditions,
Self-Organization, Perturbations, Equilibrium/Stability, and Decentralized. 1t is
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FIGURE 3. Distribution of complex systems concepts.

also important to note that some essential complex systems concepts related to
real-world scientific investigations were missing in the CSSE studies analyzed.
These include the characteristics of robustness and resilience, which would belong
in the States category.
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Educational Settings and Populations

Fifty-nine studies (79%) focused on students as the target groups, with rela-
tively equal distribution across elementary, middle, and high school grades.
Twelve studies (16%) included students across elementary, middle, and/or high
school grades. In comparison, only 11 studies (15%) focused on teachers as target
participants, and 7 studies (9%) included both teachers and students in their
samples.

Regarding gender, we were unable to derive or infer the gender composition in
38 (51%) studies as they did not provide sufficient information about their sam-
ple. Of the group that did report gender composition, there appeared to be suffi-
cient balance between number of males and females in the study samples.

Similarly, with respect to race and ethnicity, we were unable to distil much
information in this category because 59 studies (79%) did not report details about
the racial and ethnic composition. While the rest did suggest diverse races and
ethnicities in their samples, it was difficult to ascertain the proportion because of
the lack of description. Of the 12 studies that provided sufficient information,
there were no racial or ethnic groups specifically targeted.

Research Methods

Research Setting and School Type

There were 47 studies (63%) conducted in school settings, 24 studies (32%) con-
ducted in laboratory settings, and 6 studies (8%) conducted in informal settings. One
study was conducted in both school and laboratory settings, and one in both school
and informal settings. Of the 47 studies conducted in school settings, 27 (52%) did
not report sufficient information to distil the types of school the student or teacher
samples were from. Of those that did, 19 of the studies (40%) were conducted in
mainstream schools while only one study was conducted in a private school.

Sample Size and Methodology

In the category of sample size, forty studies (53%) had sample sizes of 50
or fewer participants. Of this segment, 16 (21%) had sample sizes of 20 or
fewer participants. Nine studies (12%) had 51 to 100 participants, and seven
studies (9%) had 101 to 150 participants. Two studies were not coded as they
did not record their sample sizes (Stroup & Wilensky, 2014; Wilensky &
Resnick, 1999).

In the category of methodology, mixed methods were the most common meth-
ods used in the CSSE studies. A total of 40 studies (53%) used mixed methods in
their investigation, 24 studies (32%) used qualitative methods, and 11 studies
(15%) used quantitative methods.

Research Aim and Educational Purpose

In terms of research aim, 41 studies (55%) were coded as Foundational, Early-
Stage, and Exploratory (FEE) research, and 28 studies (37%) were coded as
Design and Development (DD) research. Six studies (8%) were coded as both
FEE and DD. However, no study was coded as Efficacy, Effectiveness, and
Scale-up (EES) research.
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For educational purpose, most of the CSSE studies investigated student learning
and/or understanding of complex systems. There were 50 studies (67%) that exam-
ined how student learning of complex systems can be facilitated or improved, while
28 studies (37%) assessed students’ state of understanding. Only seven studies (9%)
investigated teacher understanding and/or learning of complex systems. There were
19 studies (25%) in which conceptual frameworks or research instruments were
developed to measure or interpret complex systems understanding. Two studies
explored the relationship between instructional practice and student learning of
complex systems, and another study examined the relationship between teachers’
understanding of complex systems and their classroom instruction. Figure 4 shows
the distribution of the dimensions of CSSE in the group of studies.

Discussion

In this section, we discuss each of the analyses and highlight areas of strength
as well as gaps in the corpus of CSSE research with respect to the research ques-
tions. Again, more details about each study can be found in Table 1.

Strong Representation in Biology and Ecology Studies

Complex systems researchers address issues in multiple scientific knowl-
edge domains and search for underlying principles that are universal in nature
(West, 2014). We found an abundance of CSSE studies in the domains of biol-
ogy and ecology. The biological systems in these studies included human body
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systems such as the circulatory and respiratory systems (e.g., Cheng & Gilbert,
2015; Hmelo-Silver, Marathe, & Liu, 2007; loannidou et al., 2010), cellular
systems (Penner, 2000; Verhoeff, Waarlo, & Boersma, 2008), and genetics or
genetic engineering (e.g., Klopfer, Yoon, & Perry, 2005; Yoon, 2008). These
studies have revealed a number of issues in student reasoning about complex
systems. For example, Hmelo-Silver and colleagues have conducted studies
with students and teachers to explore differences in how experts and novices
understand systems. They found that experts recognize the integrated nature of
system structures (components), behaviors (component interactions), and func-
tions (outcomes of interactions) and use the latter two (i.e., behaviors and func-
tions) as deep principles to organize their knowledge of the system (Hmelo-Silver
et al., 2007; Hmelo-Silver & Pfeffer, 2004). Novices, on the other hand, only
reason about structures and largely ignore behaviors and functions of systems.
Verhoeff et al. (2008) found that while students were able to accurately reason
about the structures and relationships between levels of cellular organelles,
cells, and organs, they had difficulty understanding how the different levels of
activity functioned as coherent organ processes. On the topic of genetic engi-
neering, Yoon (2008) found that the process of decentralization was a more
challenging concept to grasp than other complex systems concepts.
Decentralization is the notion that control of systems (e.g., how genetically
modified organisms spread) is often distributed across different components
rather than localized in one component.

Studies focused on the domain of ecology, which represent more than half of
the total CSSE research in our sample, have likewise highlighted student learning
challenges. On the topic of population growth, Wilkerson-Jerde and Wilensky
(2015) discussed that students lack inferential reasoning about how individual
behaviors generate group-level patterns. They suggested that a greater focus on
recognizing mathematical relationships in graphical representations can support
learning about exponential growth, which is a typical outcome of complex sys-
tems. Identifying essential relationships that fuel complex systems functions has
proven to be challenging in various ecological systems. Varma and Linn (2012)
found that only a few students in their study understood the relationship between
the albedo process and Earth’s temperature on the topic of global warming. Other
research has investigated what students understand about the impact of human-
engineered systems on environmental natural systems. For example, Hogan
(2000) found that middle school students tended to reason in a direct fashion
about how pollutants affect ecosystems rather than recognizing the importance of
indirect effects. Tsurusaki and Anderson (2010) discussed that a sound under-
standing of the relationship between human activity and ecological systems varies
across grade levels.

Need to Diversify Other Knowledge Domains

Collectively, CSSE research in biological and ecological systems has provided
a great deal of knowledge about how students reason about complex systems. The
plethora of studies have already spawned research in developing learning progres-
sions across grades in topics such as water systems (Gunckel, Covitt, Salinas, &
Anderson, 2012), carbon cycling (Mohan, Chen, & Anderson, 2009), and
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biodiversity (Songer, Kelcey, & Gotwals, 2009). But our review of the field
revealed far fewer studies in the domains of chemistry (Chi, Roscoe, Slotta, Roy,
& Chase, 2012; Levy & Wilensky, 2009, 2011; Vachliotis, Salta, & Tzougraki,
2014; Wilensky & Resnick, 1999), physics or physical sciences (DeLeo,
Weidenhammer, & Wecht, 2012; Klopfer, Scheintaub, Huang, Wendel, & Roque,
2009; Perkins & Grotzer, 2005; Stavrou & Duit, 2014; Stavrou, Duit, & Komorek,
2008); and astronomy (Calderon-Canales, Flores-Camacho, & Gallegos-Cazares,
2013; Gazit, Yair, & Chen, 2005). Given that an essential goal of K—12 science
education is to understand the utility of the scientific research enterprise and rec-
ognize how scientists apply their research (NRC, 2012), diversifying the knowl-
edge domains within which students learn about complex systems represents an
important area of future CSSE research.

Strong Representation in the Study of Complex Systems Structures and Processes

Our analysis of the complex systems concepts found within the CSSE studies
demonstrated relative depth in the areas of systems structures and processes.
Within these metalevel categories, a number of the studies attended to learning
about connections between systems components, and how they form aggregate
levels at different scales. This research is particularly well represented in a series
of studies conducted by Levy and Wilensky (2008, 2009, 2011). Using agent-
based computational simulations of chemical systems, the authors discuss the
importance of developing conceptual knowledge that connects submicrolevel par-
ticle behaviors and interactions with emergent structures formed at the macro
system-wide level. They further suggest that when students apply reasoning about
midlevel structures, such as groups and clusters that can form as intermediate
structures between microlevel and macrolevel states, they demonstrate deeper
levels of understanding of processes that fuel emergent behaviors and states as
well as a deeper level of understanding of the scientific domain.

A preponderance of studies focused on helping students recognize the relation-
ships and interdependencies of system components. Using aquaria, Jordan,
Brooks, Hmelo-Silver, Eberbach, and Sinha, (2014) showed that middle school
students in their study were more easily able to recognize system interdependen-
cies found in the processes of photosynthesis (plants making food) and limiting
factors (e.g., oxygen) but not cellular respiration (converting food to energy) or
eutrophication (lack of oxygen). They suggested that a lack of understanding of
the reciprocal relationship between photosynthesis and cellular respiration can
lead to difficulties in understanding the critical importance of having enough oxy-
gen to maintain healthy aquatic ecosystems. Efforts to enable students to under-
stand these critical relationships and interdependencies in systems have produced
learning models and assessment tools that have been examined in multiple lines
of research such as the system thinking hierarchical model (e.g., Assaraf & Orion,
2010).

Need for More Research and Interventions on System States

Structures and processes are certainly central features of complex systems and
arguably represent a place to start in terms of developing a basic level of under-
standing. However, there were some gaps in the CSSE literature that warrant
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discussion and point to a need to develop a deeper understanding of how systems
operate and exist. The relatively low numbers that appeared in the structures and
processes categories in the concepts of initial conditions, perturbations, and self-
organization (e.g., Assaraf & Orpaz, 2010; Ginns, Norton, & Mcrobbie, 2005;
Gotwals & Songer, 2010; Hogan, 2000; Puk & Stibbards, 2011) indicate that few
studies examine the critical nature of how complex systems can differ based on
initial variables, and how triggers can influence how systems self-organize. Such
investigations are important to be able to model phenomena and make predic-
tions, which are two scientific practices at the core of real-world complex systems
research and are highlighted the NGSS (NGSS Lead States, 2013). Similarly, the
analysis revealed only a few studies that focused on complex systems states such
as equilibrium and decentralization (e.g., Basu, Sengupta, & Biswas, 2015; Eilam,
2012; Hmelo-Silver, Liu, Gray, & Jordan, 2015; Peppler, Danish, & Phelps, 2013;
Repenning, loannidou, Luhn, Daetwyler, & Repenning, 2010; Yoon, 2008) and no
CSSE studies that investigated system robustness and resilience. It is clear that
more educational interventions are needed that examine system states, which are
the focal investigations of scientists concerned with addressing pressing global
issues such as biosphere sustainability (The National Academies, 2009).

Strong Representation of Studies About Student Learning

Given the goals of NGSS to provide high-quality K—12 science learning expe-
riences for all students, this review also sought to determine the extent to which
the corpus of CSSE studies has conducted research in a variety of educational
settings and a variety of populations. The target group analysis showed that
research has been conducted on a range of age-groups and grade levels across the
K-12 spectrum, although, as we discuss further on, much of this research is non-
comparative. Other outcomes of this student learning focus include the impor-
tance of using computational tools in instruction, emerging theories about why
learning about complex systems is challenging, and theoretical frameworks for
assessing complex systems.

A number of studies (e.g., Klopfer, Yoon, & Perry, 2005; Repenning et al.,
2015; Vattam et al., 2011; Wilensky & Reisman, 2006; Yoon, Koehler-Yom,
Anderson, Lin, & Klopfer, 2015) describe computational tools that have been
developed to visualize structures and mechanisms that enable users to view the
evolution of systems over time. A particularly robust line of research has been
aimed at developing agent-based simulations represented in modeling tools such
as NetLogo (Wilensky & Reisman, 2006) and StarLogo (Yoon et al., 2016). These
simulations allow students to manipulate and construct facsimiles of scientific
systems in which changes in initial conditions, random variation, decentralized
interactions, and self-organized emergent behaviors (among other system charac-
teristics) are investigated. Repenning et al. (2015) have developed what they call
“collective simulations” that tie together social learning techniques in the class-
room of learners with networked computers to engage students themselves in the
simulations. Similar earlier efforts to incorporate students as system agents can be
found in the concept of participatory simulations (Klopfer, Yoon, & Perry, 2005;
Stroup & Wilensky, 2014).
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Research on student learning about complex systems has also advanced emerg-
ing theories about why learning about complex systems presents challenges.
Grotzer and colleagues found that students tend to reason about immediate effects
rather than cascading or indirect effects. For example, students fail to realize that
a change in one population can have impacts on populations that are not directly
linked through domino-like or cyclic complex causal relationships (Grotzer &
Bell Basca, 2003; Grotzer et al., 2015). Chi et al. (2012) have hypothesized that
learning difficulties about complex causality and nonlinear dynamics may be
caused by an inability to recognize the difference between direct schema and
emergent schema. Direct schema develop within learners from commonly
observed everyday life events. They proceed through linear interactions as simple
as needing to shop for food and driving one’s car from home to the market.
However, emergent schema can be developed only if or when learners realize that
complex phenomena exist in a series of nonlinear interactions. For example, eco-
systems are weblike structures in which a trigger, like a forest fire in one part of
the system, will quickly affect many parts of the forest because they are all
interconnected.

CSSE studies of student learning have also generated a few theoretical
frameworks that locate learning in different aspects of systems. The Structure—
Behavior—Function framework hails from the field of engineering systems
design (e.g., Bhatta & Goel, 1997) and is represented in a number of studies
(e.g., Danish, 2014; Hmelo-Silver et al., 2007). A systems understanding
through the Structure-Behavior-Function lens follows from a hierarchical
knowledge of system characteristics. The components or structures (e.g., hybrid
or electric motor) and behaviors (e.g., energy consumption) must first be under-
stood in order to work with the system to achieve the desired output or function
(e.g., how far a car can travel). Yoon (2008, 2011), based on earlier work by
Jacobson (2001), offered a framework encompassing core concepts within com-
plex systems learning that identify “clockwork™ versus “complex systems”
mental models. A clockwork orientation views the world from a Cartesian per-
spective (Capra, 1982) that generally views the world and its constituents as
machines. It is based on a method of analytic thinking that involves breaking up
complex phenomena into pieces to understand the behavior of the whole from
the properties of its parts. This is in contrast to a complex systems view, accord-
ing to which the essential properties of an organism (or complex system with a
constant influx of energy) are properties of the whole—properties that none of
the parts have on their own. A system’s central properties arise from the interac-
tions and relationships among the parts, which is the dynamic process of emer-
gence. This framework investigates the processes that fuel emergence and
change in systems from micro to macro levels. The above-mentioned system
thinking hierarchical model (e.g., Assaraf & Orion, 2010) represents yet another
framework for understanding student learning.

CSSE studies have made significant inroads with respect to what students
know about complex systems and how learning can be supported. A prudent next
step might be for the field to reach consensus on essential content features of
complex systems learning.
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Need for More Research on Teacher Learning

Equally important for the field is a greater focus on what teachers know. Our
results show that comparatively few studies have worked with teachers as their
target population (e.g., Carlsson, 2002; Hmelo-Silver et al., 2007; Klopfer, Yoon,
& Perry, 2005; Liu & Hmelo-Silver, 2009; Yoon et al., 2015). We do know from
these studies that teachers typically have a weak understanding of complex sys-
tems concepts such as behaviors and processes that fuel systems (Hmelo-Silver &
Pfefter, 2004; Liu & Hmelo-Silver, 2009) and that developing teacher expertise in
the pedagogies and tools that support complex systems, such as computational
modelling tools, is essential to good instruction (Yoon et al., 2015).

Furthermore, the analysis of educational purpose with respect to dimensions of
CSSE research showed that a majority of studies focused on improving student
learning through specific interventions, which supports the goals articulated in the
NGSS. However, few studies have investigated teacher learning needs as well as
teachers’ states of complex systems understanding. Of particular interest in this
category is also a lack of focus on the relationship between teaching or instruc-
tional supports and learning, which was the subject of only three studies (Hmelo-
Silver et al., 2015; Ioannidou et al., 2010; Yoon et al., 2015). There are
well-documented challenges that teachers often experience in adopting new
teaching approaches, especially those that are computer supported (Aldunate &
Nussbaum, 2013; Ertmer, Ottenbreit-Leftwich, Sendurur, & Sendurur, 2012), as
many complex systems interventions are. Furthermore, Gerard et al. (2011) dis-
cussed the importance of opportunities for high-quality teacher professional
development in order to conduct technology-enhanced inquiry in science class-
rooms. Thus, it is important for the CSSE field to consider what characteristics of
professional development are needed to support teachers in improving students’
understanding of complex systems. This is especially essential in light of the fact
that the NGSS represents a new vision for science learning that comes with a
steep instructional learning curve (Wilson, 2013).

Need for Research on Common Context Features

Overall, the analysis also revealed that a majority of studies did not report on
gender composition, race or ethnicity, or the type of school setting where the
research was conducted. Almost a third of the studies were also conducted in
laboratory settings. Here, it is important to point out that for several decades now,
learning research has suggested that populations of learners can be affected by
demographic and contextual variables that significantly support or limit learning
and participation (Brown, Collins, & Duguid, 1989; Greeno, 1998; Sawyer, 2015).
This fact, in part, spawned the development of whole fields of educational research
such as the Learning Sciences (Kolodner, 2004; Pea, 2016; Sawyer, 2015, Yoon &
Hmelo-Silver, 2017) where the messiness of real-world learning environments
and sociocultural activity occupies a central role in understanding how people
learn (Bransford, Brown, & Cocking, 1999). To ensure that CSSE research and
interventions can impart benefits to all learners, more studies accounting for situ-
ated and contextualized factors that mediate learning are needed. Furthermore, it
would be helpful to know more about how these factors support or constrain the
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development of complex systems understanding, which was not a focus of this
review.

Strong Representation of Early-Stage Exploratory Research

With respect to whether CSSE studies have used methodologies and conducted
research toward scaling interventions, the analysis showed that the majority of
studies were aimed at FEE research. This finding might be expected considering
that complex systems research is relatively recent compared to other research in
the field of education such as literacy, mathematics, or science. In mathematics
education research, for example, a plethora of developmental research has exposed
numerous cognitive challenges in the learning of percentage and proportions
(Parker & Leinhardt, 1995) that researchers agree is a topic that must be studied.
However, the CSSE field still has not come to consensus on frameworks that
describe the content of what needs to be learned about complex systems.
Furthermore, the aforementioned focus on building computational resources has
necessarily required greater emphasis on exploratory research as newer tools con-
tinually emerge with affordances that enable different forms of participation and
learning that need development and testing. The nature of technological develop-
ment likewise dictates that some technologies become obsolete before they can be
tested at scale. For example, Yoon (2008) and Klopfer, Yoon, and Perry (2005)
described participatory simulations that were developed on mobile technolo-
gies—Thinking Tags and Palm Pilots—that are not in use today. The relative
infancy of the field, in addition to this variability of learning resources, is argu-
ably why we see a preponderance of mixed methodologies to examine implemen-
tation outcomes. Such methodologies can provide a more holistic picture of the
extent to which populations have learned and why or how they have learned over
using only quantitative or qualitative methods (Creswell & Plano Clark, 2011).

Need for More Comparative Research

Our results reveal that some subfields of complex systems research, like stu-
dent learning, have reached a level of maturity that warrants more systematic
investigation of how particular curricular and instructional design choices com-
pare to others. Only 15% of the studies in our data set used quantitative methods;
these studies tended to be experimental or quasi-experimental in design (e.g.,
DeBoer et al., 2014; Liu & Hmelo-Silver, 2009; Peppler et al., 2013; Plate, 2010;
Thompson & Reimann, 2010). Thus, CSSE researchers have generally used non-
comparative research designs. Noncomparative approaches limit any affordances
that can be interpreted as having a significantly positive (or negative) influence on
learning compared to other learning activities. Importantly, the noncomparative
nature of these studies does not provide adequate information about the added
value of learning experiences that can respond to new curricular mandates such as
those that are found in the NGSS. Further evidence to support this assertion is
suggested by the fact that no studies in our sample were categorized as efficacy,
effectiveness, or scale-up research, and the fact that more than half of the studies
worked with population sizes of less than 50. Coupled with the aforementioned
lack of focus on contextualized variables, it is difficult to determine for whom and
under what conditions CSSE interventions can achieve curriculum and
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instructional learning goals. More testing across different levels and settings
(Penuel & Fishman, 2012) and studies that address variation in performance and
system variables (Bryk et al., 2010; Bryk et al., 2015) with larger sample sizes
need to be completed in future CSSE research.

Conclusion

Over the past two decades, policy mandates in science education and real-
world complex systems research have spurred an interest in helping students learn
about complex systems at the K—12 level. This systematic review was aimed at
understanding how well the CSSE research reflects three central features of edu-
cational interventions. These are the extent to which it represents the goals of
real-world complex systems science and the goals of the NGSS; whether CSSE
research has been conducted in a variety of settings and populations; and whether
CSSE studies have collectively aimed to conduct research to scale interventions.
The research questions can also be considered as overarching goals to move the
research field forward in achieving high-quality educational experiences in sci-
ence education for all students. The analysis found critical needs in five areas: (a)
a need for more research in different knowledge domains outside of the content
areas of biology and ecology, (b) a need for more research on system states as
opposed to structures and processes, (¢) a need to develop a common understand-
ing of the complex systems content that is essential to be learned, (d) a need to
consider contextual factors that will affect the learning environment and popula-
tion including teacher learning, and (e) more comparative research to determine
the value of CSSE interventions over traditional forms of instruction, including an
emphasis on what teachers need in professional development activities. Our inten-
tion is for this review to mobilize CSSE researchers to work together to address
these important needs.
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