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Abstract10

11

1. Agent-based models find wide application in all fields of science where large-12

scale patterns emerge from properties of individuals. Due to increasing capac-13

ities of computing resources it was possible to improve the level of detail and14

structural realism of next-generation models in recent years. However, this is at15

the expense of increased model complexity, which requires more efficient tools16

for model exploration, analysis and documentation that enable reproducibil-17

ity, repeatability and parallelisation. NetLogo is a widely used environment18

for agent-based model development, but it does not provide sufficient built-in19

tools for extensive model exploration, such as sensitivity analyses. One tool20

for controlling NetLogo externally is the R-package RNetLogo. However, this21

package is not suited for efficient, reproducible research as it has stability and22

resource allocation issues, is not straightforward to be setup and used on high23

performance computing clusters and does not provide utilities, such as storing24

and exchanging metadata, in an easy way.25

2. We present the R-package nlrx, which overcomes stability and resource allo-26

cation issues by running NetLogo simulations via dynamically created XML27

experiment files. Class objects make setting up experiments more convenient28

and helper functions provide many parameter exploration approaches, such29

as Latin Hypercube designs, Sobol sensitivity analyses or optimization ap-30

proaches. Output is automatically collected in user-friendly formats and can31

be post-processed with provided utility functions. nlrx enables reproducibility32

by storing all relevant information and simulation output of experiments in33

one R object which can conveniently be archived and shared.34

3. We provide a detailed description of the nlrx package functions and the overall35

workflow. We also present a use case scenario using a NetLogo model, for which36

we performed a sensitivity analysis and a genetic algorithm optimization.37

4. The nlrx package is the first framework for documentation and application of38

reproducible NetLogo simulation model analysis.39

Keywords: agent-based modelling, individual-based modelling, reproducible40

workflow, R package, NetLogo41
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Introduction42

Agent-based models are an increasingly popular method for understanding complex sys-43

tems (DeAngelis & Grimm, 2014). They are developed and applied across many different44

research disciplines from natural sciences over archeology to socio-economic sciences (e.g.,45

Dislich et al., 2018; Vincenot, 2018). Agent-based models incorporate the heterogeneity46

of entities at the individual level in order to observe patterns emerging on broader scales47

(Grimm & Railsback, 2005). Due to the release from computing power constraints in48

recent years, next-generation agent-based models have evolved that are structurally re-49

alistic, powerful and detailed enough to address real-world problems (Cabral et al., 2017;50

Grimm & Berger, 2016). However, next-generation agent-based models require reprodu-51

cability, repeatability and parallelisation of model analyses. Access to scripts, runs and52

results of statistical analyses is a key criterion for reproducible research (Sandve et al.,53

2013; Peng, 2011). Yet, incentives for sharing code of agent-based models and model54

analyses alongside publications are still lacking (Janssen, 2017).55

A widely used programming language to develop agent-based models in ecological56

and socio-economic sciences is NetLogo (Vincenot, 2018; Abar et al., 2017; Wilensky,57

1999). NetLogo is a Java-based modelling environment that features a very compre-58

hensible syntax, which allows for fast prototyping of agent-based models but also offers59

capabilities to formulate and implement complex agent-based models efficiently (Rails-60

back et al., 2017). With rising complexity of NetLogo models, increasing efforts need61

to be spent on model analyses and documentation of such analyses. Model analysis is62

a crucial part of the modelling cycle, not only for understanding model processes but63

also during model refinement and development (Grimm & Railsback, 2005). Often sen-64

sitivity analyses are the central part of such refinements, because they give access to65

detailed information on the relative importance of model parameters for model outputs66

(Saltelli et al., 2008). Sensitivity analyses requires the simulation thousands of different67

parameter value combinations to gain a better understanding of the modelled systems.68

Unfortunately, the capabilities of the built-in tool of NetLogo to run such analyses, the69

NetLogo BehaviorSpace, are limited. If more than one parameter is changed within one70

experiment, BehaviorSpace automatically creates a full-factorial parameter matrix in-71

cluding all possible combinations of parameter values. This might be generally suitable72

for simple models, but with rising model complexity more efficient ways of scanning the73

parameter space and a better control of the design of parameter matrices are required.74

Additionally, post-processing of NetLogo model output is mostly done within statistical75

software, such as R (the most prominent programming language for ecologists; Lai et al.,76
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2019). Transfer of the output data from NetLogo into R may not be straightforward,77

especially when dealing with spatially-explicit model output. This is because spatial78

NetLogo output is mostly reported in nested lists which need to be parsed and split to79

convert the data into a usable format.80

The R package RNetLogo currently is the only R package available to set up NetLogo81

model simulations directly from R (Thiele et al., 2012, 2014). However, the package es-82

tablishes an interactive connection between the R session and the Java virtual machine83

that runs the NetLogo model application, which has two main drawbacks: (1) RNetLogo84

establishes the interactive connection via the rJava package, which may be cumbersome85

to set up, especially on remote systems, and requires access to system-wide environ-86

mental variables. (2) Resource allocation of rJava and RNetLogo may be problematic87

when running large jobs with many simulations. Memory may not be cleared efficiently88

between runs and Java virtual machines may freeze due to memory constraints. Fur-89

thermore, RNetLogo does not provide a convenient workflow to set up experiments with90

minimal coding, utility functions to generate simulations, or features to enable repro-91

ducible research (see a full comparison in Tab. 1).92

We have, therefore, developed the R package nlrx to provide a flexible framework for93

self-contained and reproducible analysis of NetLogo models from R, while also deliver-94

ing performance gains (see Fig. 1 and Supplementary Material 1). The nlrx framework95

serves four main needs for next-generation NetLogo modellers: (1) it provides an inter-96

face between R and NetLogo. Simulations are completely defined and stored within R97

objects. This allows the application of a huge toolbox of statistical methods to create98

simulation experiments and corresponding parameter input matrices. The nlrx package99

utilizes the controlling API of NetLogo’s BehaviorSpace to set up and run experiments.100

Thus, in contrast to RNetLogo, the connection between R and NetLogo is not interactive101

and does not rely on the rJava package. (2) it enables reproducible research (Sandve102

et al., 2013) by storing a simulation experiment in one single R object (including param-103

eter input matrix, applied simulation method and simulation results) and allows easy104

sharing of code and results among colleagues, with students and for publication. (3)105

nlrx enables utilization of high performance computing clusters (HPCs) in a very con-106

venient way (see Supplementary Material 2). (4) nlrx provides post-processing analysis107

functions of NetLogo model output for several applications, such as sensitivity analy-108

ses and calculation of descriptive statistics. nlrx also enables gathering spatial output109

from models, such as coordinates and properties of individuals and patches and provides110

functions to convert the output into spatial R objects (raster and vector data).111

4
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Table 1: Main differences between NetLogo’s BehaviorSpace, RNetLogo and nlrx.

Feature &
Description

Behavior
Space RNetLogo nlrx

High-performance computing (HPC)
Straightforward setup of HPC machines to submit and run
large NetLogo simulation jobs.

- - 3

Controllable Java environment
Possibility to open a new Java virtual machine for each
model simulation.

- - 3

Interactive Java environment
Possibility to control model parameters during model run. - 3 -

Reproducible research tools
Possibility to perform model analyses in a non-interactive,
reproducible way. Means to control for random number
generator seeds and exchange of model files.

- - 3

Spatial integration of agent metrics
Coerce NetLogo agent metrics to geospatial data objects
(vector and raster data).

- - 3

Tidy data format
Data format in which each observation is a unique cell and
each variable a unique column (Wickham, 2014).

- - 3

Utility functionality
Functionality to perform pre- and post-processing of
simulation data.

- - 3

5
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Figure 1: Comparison of execution time (top panel) and memory usage (bottom panel)
of nlrx (blue) and RNetLogo (red). Benchmarks were calculated on different
machines with various processor types, available memory and operating sys-
tems (details see Supplementary material 1, boxplots show variation between
systems). Both packages were used to execute NetLogo model simulations with
the Wolf Sheep Model from the NetLogo Models Library. With each package
we simulated 8 replications of a Latin-Hypercube Sampling design with 100
samples and a run time of 500 ticks of each simulation. Available memory was
measured before starting simulations (Pre simulation) and after simulations
have finished (Post simulation). A third measurement of available memory
was taken after manually executing the R garbage collection function gc (Post
gc).

6
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The R package nlrx112

The nlrx package utilizes the NetLogo BehaviorSpace interface by calling NetLogo from113

the command line via a bash script (*.sh, linux) or a batch file (*.bat, windows). By de-114

fault, NetLogo BehaviorSpace experiments are stored in XML format within the *.nlogo115

model file. However, when NetLogo is started in headless mode from command line, it116

is also possible to commit XML BehaviorSpace experiment files to setup and run experi-117

ments. The nlrx package creates such XML BehaviorSpace experiment files dynamically118

in order to run simulation experiments from R.119

nlrx workflow120

Figure 2: Workflow of the nlrx package. The nl object stores all the information
needed to run NetLogo models. The experiment object, which contains all
model-specific information, such as names of setup and go procedures, run-
time, variable range and metrics and the simdesign object, which contains
all simulation-related information, such as input parameter matrix, simula-
tion method and simulation output, are nested within this nl object. Ab-
breviations: JVM=java virtual machine; XML=Extensible Markup Language;
sh=bash script; bat=batch file

The typical workflow of the nlrx package starts with creation of an nl object, which121

7
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Table 2: List of slots of an nl S4 class object.

Slot Example Description

nlversion "6.0.4" Version number of the NetLogo version
nlpath "/home/NetLogo~6.0.4" Path to a NetLogo installation
modelpath "/home/NetLogo~6.0.4/app/

models/Sample Models/Biology/
Wolf~Sheep~Predation.nlogo"

Path to a *.nlogo model file

jvmmem 1024 Java virtual machine memory in megabytes
experiment Stores an experiment S4 class object
simdesign Stores a simdesign S4 class object

is an S4 class object that stores basic information on NetLogo (see Fig. 2, and Tab. 2).122

The nl object contains information on the NetLogo version (nlversion), the path to123

the NetLogo directory (nlpath), the path to the NetLogo model file (modelpath) and124

the amount of reserved memory for each Java virtual machine (jvmmem).125

Next, an experiment needs to be created and attached to the nl object (see Fig.126

2, and Tab. 3). The experiment object stores all information that would be entered127

into a typical BehaviorSpace experiment (see Tab. 3). The experiment object con-128

tains the name of the experiment (expname), the directory where output is written to129

(outpath), the number of repeated runs within BehaviorSpace (repetition), a logi-130

cal variable whether output should be measured on each tick or on the final tick only131

(tickmetrics), names of setup and go procedures (idsetup, idgo), the maximum132

number of ticks that should be simulated (runtime, 0=infinite), a vector of ticks for133

which output is reported (evalticks), a stop condition (stopcond), output metrics134

(metrics, metrics.turtles, metrics.patches, metrics.links), variable parameters135

and corresponding value ranges (variables), and constant parameters (constants).136

Finally, a simdesign needs to be attached to the nl object (see Fig. 2, and Tab. 4).137

The nlrx package provides many helper functions to create pre-defined simdesigns for138

simple parameter screenings (simple, distinct, full-factorial), sensitivity analyses (Morris139

(Morris, 1991), Sobol (Sobol, 1990), eFast (Saltelli et al., 1999)) or parameter optimiza-140

tions (simulated annealing (Kirkpatrick et al., 1983), genetic algorithm (Holland, 1992)).141

These helper functions take information from the experiment (variables, constants)142

to create a simdesign object that contains the name of the simulation design method143

(simmethod), a vector of random seeds (simseeds), the generated parameter matrix144

(siminput) and an empty tibble slot to attach output results after simulations have145

been finished (simoutput). The siminput and simoutput slots store tibble data, a mod-146

ern representation of rectangular data in R (Müller & Wickham, 2018). The sensitivity147

8
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Slot Example Description

expname "nlrx-example" Name of the BehaviorSpace experiment
outpath "/home/nlrxout" Path to an output directory
repetition 1 Number of repetitions
tickmetrics "true" If true, metrics are collected on each model

tick, otherwise only on the last tick
idsetup "setup" Name or vector of names containing NetLogo

procedures that are called to setup the model
idgo "go" Name or vector of names containing NetLogo

procedures that are called to run the model
idfinal "final" Name or vector of names containing NetLogo

procedures that are called at the end of one
run

idrunnum "id-input" Name of a NetLogo numeric widget to transfer
the current nlrx run number to NetLogo

runtime 100 Maximum runtime of model simulations
(number of ticks)

evalticks seq(90, 100) Number or vector of ticks indicating when
metrics should be collected

stopcond "not any? turtles" A NetLogo reporter that reports TRUE/-
FALSE. If it reports TRUE the current simu-
lation run is stopped

metrics c("count turtles") Valid NetLogo reporters that are used to col-
lect output data

metrics.turtles list("turtles"=c("who",
"pxcor","pycor","color"))

A list with named vectors of strings defining
valid turtles-own variables that are taken as
output measurements

metrics.patches c("pxcor","pycor",
"pcolor")

A vector of strings defining valid patches-own
variables that are taken as output measure-
ments

metrics.links list("links"=c("end1",
"end2"))

A list with named vectors of strings defining
valid links-own variables that are taken as out-
put measurements

variables list("variable.parameter.
1"=list(min=50, max=
150, step=10, qfun=
"qunif"))

A list with NetLogo globals that should be
varied in a simdesign

constants list("constant.parameter.
1"=4, "constant.parameter.
2"=0.1)

A list with NetLogo globals that should stay
constant in a simdesign

9
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Table 4: List of slots of a simdesign S4 class object.

Slot Description

simmethod Name of the simdesign method (e.g. "ff"=full factorial, "lhs"=latin hypercube
sampling)

siminput tibble providing input parameterisations for the NetLogo model
(cols=parameter, rows=runs)

simobject List containing a simdesign object with further details on the simmethod that
may be needed for output analysis

simseeds Vector containing model seeds
simoutput Slot to attach simulation results to the nl object

analyses and optimization simdesign helper functions also create a simulation object148

(simobject) that contains further information needed for post-processing, such as cal-149

culation of sensitivity indices. The optimization algorithms do not generate a parameter150

matrix in advance, because the parameterization of later runs depends on the results151

of previous runs. It is also possible to write user-defined helper functions to create152

simdesign objects.153

After initialization of the nl object, simulations can be run by calling one of the154

run_nl_*() functions that come with nlrx. For simdesigns that generate a parame-155

ter matrix, run_nl_one() can be used to execute one specific row of the simdesign156

parameter matrix siminput by specifying the row ID and a model seed. This can be157

useful for testing specific parameterizations. The function run_nl_all() executes all158

simulations from the parameter matrix siminput across all seeds. run_nl_all() uses159

the future_map_dfr() function (furrr package) to loop over random seeds and rows160

of the siminput parameter matrix (see Fig. 2). This allows users to run the function161

sequentially or in parallel, on local machines and remote HPC machines. Parallelisation162

options can be easily adjusted by using different future plans before calling the function163

(for more details see documentation of R package future). For optimization simdesigns164

that do not come with a pre-generated parameter input matrix, run_nl_dyn() can be165

used to execute model simulations with dynamically generated parameter settings.166

The connection between R and NetLogo is realized within these three run_nl_*()167

functions. First, a BehaviorSpace experiment XML file is created from the information168

that is stored within the provided nl object. This XML file contains the random seed,169

parameter settings and experiment settings. Next, depending on the operating system,170

a bash script or batch file is generated that is used to execute NetLogo via the command171

line in headless mode. The file contains information that is stored within the nl object172

(such as NetLogo path, model path, Java virtual machine memory and the path to the173

10
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previously generated XML file). Afterwards, the script is executed to run the NetLogo174

simulations. When the simulation is finished, the NetLogo model output data is read175

into R. In the case of multiple simulations, results are bound together and reported as176

one large tibble.177

After simulations are finished, the resulting output table can be attached to the nl178

object by using the provided setter function setsim. This stores a complete experi-179

ment setup, including output results, in one R object. After outputs have been at-180

tached to the nl object, the output results can also be written to a *.csv file by calling181

write_simoutput(). The output can also be further analyzed by calling analyze_nl().182

For example, for an nl object with a Morris simdesign and attached simulation out-183

put results running analyze_nl(), lists Morris sensitivity indices for each parameter184

and each measured model output. For reproducible research, it is important to attach185

the output to the nl object even if one does not want to conduct further analyses. By186

attaching the output to the nl object, all information of the simulation experiment,187

including parameter inputs and simulation output, is stored within an nl object, which188

can be easily stored as *.rds file for documentation purposes.189

Further functionality190

nlrx offers a function unnest_simoutput() to turn agent-specific metrics that were191

collected during the simulation into a wide-format table that splits every type of agent,192

patch and link in a unique column and nests all measured variables in this column.193

To be able to derive this information, the nl object offers slots to specify agent, patch194

and link metrics. The unnested spatial data can easily be visualized to illustrate model195

behavior (Fig. 3). Furthermore, the functions nl_to_points(), nl_to_raster() and196

nl_to_graph() coerce the nl object directly into a spatial data type (e.g. spatial points197

and raster data for agents and patches, as well as undirected network graphs for links).198

To be able to use nlrx as a fully reproducible framework, the functions export_nl() and199

import_nl() store R and corresponding NetLogo model scripts in a zip file, which uses200

relative paths and thus enables easy collaboration. Furthermore, nlrx provides functions201

to generate documentation files as *.html, *.pdf and *.docx files from NetLogo model files202

containing specific documentation comment sections. nlrx also provides a function to203

generate a network of NetLogo model procedures (for details see Supplementary material204

3). nlrx will thus enable ecologists to make use of agent-based NetLogo models in their205

research while permitting a workflow that follows modern scientific standards.206

11
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Figure 3: Visualization of spatial output gathered from the Ants model (see section ’Use
case: Ants model’ for a description of the model) via the nlrx package. Ants
positions (brown yen signs), position of food cells (black), position of the nest
cell (brown circle), and amount of chemicals on all cells (heat shading, with
darker colors indicating higher amount of chemicals) were measured using the
metrics.turtles and metrics.patches slots of the nlrx experiment. Panels show
output for every 100th tick of a model simulation.

12
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Use case: Ants model207

This section describes two example use cases of nlrx using the Ants simulation model208

from the NetLogo Models Library: (i) a Sobol sensitivity analysis based on R’s advanced209

statistical packages, (ii) a genetic algorithm optimization approach to optimize foraging210

speed.211

The Ants model is a spatially-explicit model of an ant colony foraging for food. The212

landscape is set up as a patch lattice. The center cell of the landscape is the nest of the213

ant colony and all ants (number depending on parameter population) are created within214

this nest cell on initialization. Additionally, there are three clusters of food source cells215

created within the landscape. Food source clusters are created at different distances216

from the ant nest, with food source 1 being closest to the nest and food source 3 being217

furthest away from the nest. During a model run, ants move randomly in order to find218

food. If any ant finds a food source cell, a certain amount of food is transferred from219

that cell to the ant, which carries the food back to the nest. Each food cell only supplies220

a certain amount of food and is reset to a non-food cell once all food from this cell221

has been gathered. Any ant carrying food releases chemicals at its current position.222

Chemicals also diffuse to neighboring cells, depending on the parameter difussion-rate223

and evaporate depending on the parameter evaporation-rate. If ants sense chemicals on224

their current or neighboring patch, they change their movement pattern from random225

walk to directed walk following the trail of chemicals by moving into the direction which226

contains the most chemicals. The main output of the model simulation is the time227

needed to gather all food from all food sources. We also measure the time that is needed228

to completely deplete specific food source clusters. Furthermore, we are interested in the229

spatial distribution of ants under different parameterizations of the model (for details230

see Supplementary material 4).231

Sensitivity Analysis with nlrx232

In order to demonstrate the usability and workflow of the nlrx package, we performed233

a global sensitivity analysis of the Ants model (Sobol, 1990). We varied the three234

model parameters population, diffusion-rate and evaporation-rate by applying a Sobol235

parameter variation approach. As main output we measured the simulation time (ticks)236

until all food sources were completely depleted by the ants.237

To set up the sensitivity analysis with nlrx, we first defined an nl object (List. 1).238

13
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1 library(nlrx)
2 nl <- nl(nlversion = "6.0.4",
3 nlpath = "/home/usr/NetLogo_6.0.4/",
4 modelpath = "/home/usr/NetLogo_6.0.4/app/models/Biology/Ants.nlogo",
5 jvmmem = 1024)

Listing 1: Defining an nl object.

In the next step, we attached an experiment to the previously generated nl object239

(List. 2). We defined that output should be measured only on the final tick (tickmetrics240

= "false"). We set the runtime to infinite (runtime, 0=infinite) and defined a stop condi-241

tion to stop model execution once no food cell is left in the model landscape (stopcond).242

As output metrics we measured the number of ticks simulated when the model run fin-243

ishes (metrics).244

1 nl@experiment <- experiment(expname = "nlrx_ants_sobol",
2 outpath = "/home/usr/output",
3 repetition = 1,
4 tickmetrics = "false",
5 idsetup = "setup",
6 idgo = "go",
7 runtime = 0,
8 stopcond = "not any? patches with [food > 0]",
9 metrics = c("ticks"),

10 variables = list(
11 "population" = list(min=10, max=200, qfun="qunif"),
12 "diffusion-rate" = list(min=1, max=99, qfun="qunif"),
13 "evaporation-rate" = list(min=1, max=99, qfun="qunif")
14 )
15 )

Listing 2: Attaching an experiment to an nl object.

To construct an input parameter matrix from the defined experiment and variable245

ranges, a simdesign needs to be attached to the nl object (List. 3). For our Sobol sensi-246

tivity analysis, we used the simdesign helper function simdesign_sobol(). We defined247

the number of samples (samples), the order of interaction effects (sobolorder), the248

number of bootstrapping replicates (sobolnboot), the confidence interval (sobolconf),249

the number of Sobol analysis repetitions (nseeds) and the precision level of values within250

the parameter matrix (number of decimal digits, precision).251

14
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1 nl@simdesign <- simdesign_sobol(nl = nl,
2 samples = 1000,
3 sobolorder = 2,
4 sobolnboot = 100,
5 sobolconf = 0.95,
6 nseeds = 6,
7 precision = 3)

Listing 3: Attaching a Sobol simdesign to an nl object.

This nl object stores all information needed to run the sensitivity analysis. We can252

execute all simulations by calling run_nl_all() (List. 4). Because in our experiment253

we set tickmetrics to "false", output will only be reported for the final simulation254

step.255

1 results <- run_nl_all(nl)

Listing 4: Executing all simulations of an nl object.

In order to execute the analyze_nl() function, the results tibble first needs to be256

attached to the nl object (List. 5).257

1 setsim(nl, "simoutput") <- results
2 sensitivityIndices <- analyze_nl(nl)

Listing 5: Attaching simulation results to an nl object and calculating sensitivity indices.

The Sobol sensitivity analysis revealed a very large main effect of the population258

parameter on the effectiveness of food collection (measured as number of ticks until all259

food sources are depleted) by the ant colony (see Fig. 4). The more ants were present,260

the faster the colony depleted all food sources. The two chemical-related parameters261

evaporation-rate and diffusion-rate showed only small main effects (see Fig. 4). However,262

we found some interaction effects between population and evaporation-rate, albeit at a263

very low level. There were no interactions between population and diffusion-rate and264

between diffusion-rate and evaporation-rate.265

1 write_simoutput(nl)
2 export_nl(nl, nl@modelpath, <path-to-disk>)

Listing 6: Export simulation output and model files.

After running all simulations with nlrx, we store the simulation output as a *.csv266

file using the write_simoutput() function (see List. 6). Additionally, we store the267
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Figure 4: Main effects (upper panel) and interaction effects (lower panel) of each pa-
rameter of the Ants model on the total number of simulation steps that were
simulated until all food sources were depleted by the ant individuals. Pa-
rameter effects were derived by applying a Sobol sensitivity analysis approach.
Points indicate parameter mean sensitivity (Sobol effect) of 6 model simulation
replicates, linebars indicate the corresponding standard deviation.

nl object, together with underlying model files as a zip folder using the export_nl()268

function.269

Genetic Algorithm with nlrx270

In order to demonstrate the optimization functions of nlrx, we applied a genetic algorithm271

to the Ants model. The genetic algorithm varies parameters of the model within defined272

ranges, in order to minimize a defined fitness criterion. In our case, we want to minimize273

the number of time steps needed by the ant colony to deplete all food sources completely.274

For this analysis, we do not need to make any changes to the nl object and experiment275

that we used in the Sobol sensitivity analysis example, thus we can reuse the nl object276

and just add a different simdesign. In order to set up a genetic algorithm optimization277

simdesign, we used the simdesign helper function simdesign_GenAlg() (List. 7). We278
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defined the number of initial parameterizations (popSize), the number of iterations279

(iters), the index of a defined output metric (see metrics slot in experiment) that280

is used as evaluation criterion (evalcrit), the elitism rate (elitism), the mutation281

probability (mutationChance) and the number of random seeds for replications of the282

algorithm (nseeds).283

1 nl@simdesign <- simdesign_GenAlg(nl = nl,
2 popSize = 100,
3 iters = 10,
4 evalcrit = 1,
5 elitism = NA,
6 mutationChance = NA,
7 nseeds = 1)

Listing 7: Attaching a genetic algorithm simdesign to an nl object.

In contrast to sensitivity analysis simdesigns, for optimization simdesigns there is284

no parameter input matrix set up in advance. Instead, random starting values are chosen285

within the defined parameter ranges. The parameterization of the next simulation run286

is dynamically created, depending on the output of the previous simulation. Thus, for287

optimization simdesigns, the nlrx function run_nl_dyn() needs to be used to execute288

the simulations (instead of run_nl_all() which iterates over a pre-generated parameter289

matrix)(List. 8).290

1 results <- run_nl_dyn(nl = nl,
2 seed = getsim(nl, "simseeds")[1])
3

4 setsim(nl, "simoutput") <- results

Listing 8: Executing dynamic simulations of an nl object with an optimization approach.

The results from the genetic algorithm simdesign are reported as a list which con-291

tains information of parameterizations and the evaluation criterion of each population292

of the genetic algorithm. We can also identify the best found parameterization, i.e. the293

parameterization that resulted in the smallest fitness value.294

The genetic algorithm was able to decrease the time to deplete all food sources from295

more than 3000 ticks to below 500 ticks over 100 iterations (see Fig. 5, upper left). The296

parameterization of the best found solution had a moderately large population (166),297

a medium diffusion-rate (18.28), and a low evaporation-rate (8.41) (see Fig. 5, upper298

right).299

To evaluate the stability of the optimization result under different random seeds, we300

simulated an additional 10 replicates (each with a different random seed) of the best301
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Figure 5: A genetic algorithm was applied to minimize simulation time until all food
sources were depleted. The figure illustrates the minimization process over
iterations of the algorithm (upper left) and the best found parameterization
in terms of minimum simulation time (upper right). This best found param-
eterization was used to run the Ants model with 10 replicates and measuring
the percentage of food gathered at each tick (lower left, colors indicate indi-
vidual simulations). We also aggregated these 10 runs to measure at which
time steps the three individual food source clusters were completely depleted
(lower right). Dashed lines illustrate final time step of each curve.

parameterization. In order to run a specific parameterization, the nlrx package provides302

the simdesign helper function simdesign_simple(), which creates a parameter table303

for one single simulation that uses only defined values of constant parameters (constants304

slot of experiment). We removed all variable parameters from the experiment and305

defined those parameters as constants instead (List. 9). We also added counts of food306
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sources as output metrics to the metrics slot of the experiment. Finally, we used the307

simdesign_simple() function to attach a simdesign containing a siminput matrix308

with only one parameterization and a simseeds vector with 10 random seeds (nseeds309

= 10).310

Again, we used the run_nl_all() function to execute the simulations and calculated311

the percentage of food gathered at each tick and identified the tick at which specific312

food source clusters were depleted completely. We observed some variation in total313

simulation time between these replicates, but all runs lay between 500 and 800 ticks314

(see Fig. 5, lower left). While the first two food sources were depleted very fast in all315

replicates, depletion times were more variable for the third food source, which had the316

largest distance from the ant nest (see Fig. 5, lower right).317

1 nl@experiment@expname <- "ants_genalg_valid"
2 nl@experiment@tickmetrics <- "true"
3 nl@experiment@variables <- list()
4 nl@experiment@constants <- list("population" = 166,
5 "diffusion-rate" = 18.28,
6 "evaporation-rate" = 8.41)
7 nl@experiment@metrics <- c("ticks",
8 "sum [food] of patches with [pcolor = cyan]",
9 "sum [food] of patches with [pcolor = sky]",

10 "sum [food] of patches with [pcolor = blue]")
11

12 nl@simdesign <- simdesign_simple(nl, nseeds = 10)
13 results.best <- run_nl_all(nl)

Listing 9: Setting specific slots of the experiment within an nl object and attaching a
simple simdesign.

Conclusion and outlook318

Next-generation agent-based models must be reproducible and repeatable. The new nlrx319

R-package fulfills the need for an efficient tool for running reproducible and repeatable320

analyses for the popular programming language NetLogo. nlrx has several advantages321

in comparison to previous approaches that connect R and NetLogo: (1) the package322

does not rely on the rJava package which is known to be unstable and causes many323

problems especially when working on machines with different configurations; (2) setup324

of model experiments is very similar to NetLogo BehaviorSpace. Thus, NetLogo users325

who do not have much experience with R will feel familiar with the workflow of nlrx. (3)326

multiprocessing and execution of large model simulations on remote HPC machines can327

be easily done with nlrx by adjusting the future plan of the R session. (4) all information328
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on the model version, simulation experiment definitions and simulation design definitions329

are stored within one single R object. By using the nlrx export and import functions,330

these objects can be archived and shared, together with all required NetLogo model files.331

This functionality enables a reproducible workflow and easy collaboration.332

In contrast to RNetLogo, NetLogo instances of nlrx are not interactive. There is no333

direct connection from R to NetLogo and thus, it is not possible to manipulate the334

NetLogo model from within R while the model is running. However, for most use cases335

it is sufficient to set up and run model simulations in a convenient way because manual336

exploration of NetLogo models can also be done directly in NetLogo.337

The presented use cases of the Ants model highlight the flexibility and convenient338

workflow of the nlrx framework. With the nested class layout the same nl object and339

experiment can be reused for several simulation design approaches (as demonstrated340

in the genetic algorithm use case). Thus, research questions can be tackled from very341

different angles with minimal code adjustments. Because reported output from model342

simulations is reported in a tidy data format (see section 3 Data Accessibility for ad-343

ditional R code examples), post-processing, data analysis and result visualization can344

benefit from the well-established tool set provided by the tidyverse framework (e.g. dplyr,345

ggplot2 packages). Collecting agent metrics and coercing them to spatial objects is now346

possible with nlrx in two lines of code, thus enabling ecologists to use advanced sta-347

tistical methods on the individual level of their simulation models (see Supplementary348

Material 4).349

Increasing model complexity across many disciplines increases the need of standard-350

ized tools and open standards for model documentation, application and analysis. For351

example, the ODD (Overview, Design concepts, and Details) protocol and the TRACE352

(TRAnsparent and Comprehensive Ecological modelling documentation) framework are353

such standards for documentation of agent-based models that are widely accepted and354

applied within the field of agent-based modelling (Grimm et al., 2014, 2006, 2010; Müller355

et al., 2013). However, given the rising importance of reproducible research as a standard356

in academia, standards for documentation and reproducibility of applied model analysis357

and corresponding code are still lacking. nlrx is a first step to provide a framework358

for documentation and application of reproducible NetLogo simulation model analysis.359

While nlrx mainly provides tools that enable reproducible research, future work might360

also give recommendations on a best practice approach that also incorporates data man-361

agement, collaboration and version control.362

nlrx has been officially released on CRAN (current version 0.2.0) and peer-reviewed363

by rOpenSci (https://github.com/ropensci/onboarding/issues/188).364
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