patches-own [ new-color ;; currently, always either white or black inner-neighbors ;; other cells in a circle around the cell outer-neighbors ;; other cells in a ring around the cell (but usually not touching the cell) ] to setup ca ;; computes inner and outer neighbors in an ellipse around each cell ask patches [ set inner-neighbors ellipse-in inner-radius-x inner-radius-y ;; outer-neighbors needs more computation because we want only the cells in the circular ring set outer-neighbors ellipse-ring outer-radius-x outer-radius-y inner-radius-x inner-radius-y ] ifelse any? patches with [ count outer-neighbors = 0 ] [ user-message "It doesn't make sense that 'outer' is equal to or smaller than 'inner.' " + " Please reset the sliders and press Setup again." stop] [restart] end ;; this procedure sets approximately initial-density percent of the ;; cells white and the rest black; if initial-density is set at 50% ;; then about half the cells will be white and the rest black to restart ask patches [ ifelse random-float 100.0 < initial-density [ set pcolor white ] [ set pcolor black ] ] end to go ask patches [ pick-new-color ] ask patches [ set pcolor new-color ] end to pick-new-color ;; patch procedure locals [activator inhibitor difference] set activator count inner-neighbors with [pcolor = white] set inhibitor count outer-neighbors with [pcolor = white] ;; we don't need to multiply 'activator' by a coefficient because ;; the ratio variable keeps the proportion intact set difference activator - ratio * inhibitor ifelse difference > 0 [ set new-color white ] [ if difference < 0 [ set new-color black ] ] ;; note that we did not deal with the case that difference = 0. ;; this is because we would then want cells not to change color. end ;;; procedures for defining elliptical neighborhoods to-report ellipse-in [x-radius y-radius] ;; patch procedure report patches in-radius (max list x-radius y-radius) with [1.0 >= ((xdistance myself ^ 2) / (x-radius ^ 2)) + ((ydistance myself ^ 2) / (y-radius ^ 2))] end to-report ellipse-ring [outx-radius outy-radius inx-radius iny-radius] ;; patch procedure report patches in-radius (max list outx-radius outy-radius) with [1.0 >= ((xdistance myself ^ 2) / (outx-radius ^ 2)) + ((ydistance myself ^ 2) / (outy-radius ^ 2)) and 1.0 < ((xdistance myself ^ 2) / (inx-radius ^ 2)) + ((ydistance myself ^ 2) / (iny-radius ^ 2)) ] end ;; The following two reporter give us the x and y distance magnitude. ;; you can think of a point at the tip of a triangle determining how much ;; "to the left" it is from another point and how far "over" it is from ;; that same point. These two numbers are important for computing total distances ;; in elliptical "neighborhoods." to-report xdistance [other-patch] ;; patch procedure report value-from (patch pxcor 0) [distance (patch (pxcor-of other-patch) 0)] end to-report ydistance [other-patch] ;; patch procedure report value-from (patch 0 pycor) [distance (patch 0 (pycor-of other-patch))] end ; *** NetLogo Model Copyright Notice *** ; ; This model was created as part of the projects: ; PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN ; CLASSROOMS and INTEGRATED SIMULATION AND MODELING ENVIRONMENT. ; The project gratefully acknowledges the support of the ; National Science Foundation (REPP & ROLE programs) -- grant numbers ; REC #9814682 and REC-0126227. ; ; Copyright 2003 by Uri Wilensky. Updated 2003. All rights reserved. ; ; Permission to use, modify or redistribute this model is hereby granted, ; provided that both of the following requirements are followed: ; a) this copyright notice is included. ; b) this model will not be redistributed for profit without permission ; from Uri Wilensky. ; Contact Uri Wilensky for appropriate licenses for redistribution for ; profit. ; ; To refer to this model in academic publications, please use: ; Wilensky, U. (2003). NetLogo Fur model. ; http://ccl.northwestern.edu/netlogo/models/Fur. ; Center for Connected Learning and Computer-Based Modeling, ; Northwestern University, Evanston, IL. ; ; In other publications, please use: ; Copyright 1998 by Uri Wilensky. All rights reserved. See ; http://ccl.northwestern.edu/netlogo/models/Fur ; for terms of use. ; ; *** End of NetLogo Model Copyright Notice *** @#$#@#$#@ GRAPHICS-WINDOW 353 10 668 346 30 30 5.0 1 10 1 1 1 CC-WINDOW 11 300 329 403 Command Center BUTTON 212 60 301 93 NIL setup NIL 1 T OBSERVER T BUTTON 225 254 296 287 NIL go T 1 T OBSERVER T SLIDER 7 194 179 227 initial-density initial-density 0 100 50 1 1 % SLIDER 7 230 180 263 ratio ratio 0 2.0 0.35 0.01 1 NIL BUTTON 224 216 296 249 step go NIL 1 T OBSERVER T BUTTON 223 179 296 212 NIL restart NIL 1 T OBSERVER T SLIDER 8 10 180 43 inner-radius-x inner-radius-x 0 10 3 1 1 cells SLIDER 8 45 180 78 inner-radius-y inner-radius-y 0 10 3 1 1 cells SLIDER 7 79 180 112 outer-radius-x outer-radius-x 0 10 6 1 1 cells SLIDER 7 114 179 147 outer-radius-y outer-radius-y 0 10 6 1 1 cells @#$#@#$#@ WHAT IS IT? ----------- Could it be that a single mechanism underlies such diverse patterns such as the stripes on a zebra, the spots on a leopard, and the blobs on a giraffe? This model is a possible explanation of how the patterns on animals' skin self-organize. If the model is right, then even though the animals may appear to have altogether different patterns, the rules underlying the formation of these patterns are the same and only some of the values (the numbers that the rules work on) are slightly different. Thinking of the formation of fur in terms of rules also helps us understand how offspring of animals may have the same type of pattern, but not the same exact pattern. This is because what they have inherited is the rules and the values rather than a fixed picture. The process by which the rules and values generate a pattern is affected by chance factors, so each individual's pattern is different, but as long as the offspring receive the same rules and values, their own fur will self organize into the same type of pattern as their parents'. HOW IT WORKS ------------ We model the animal skin by a square array of many melanocytes (pigment cells) that are each in either of two states: colorful ('D' for differentiated) or not-colorful ('U' for undifferentiated). The state of a cell can flip between D and U. The color cells (the D's) secrete two types of 'morphogens': activators (A) and inhibitors (I). Activators, on their own, cause a central cell to become colorful; inhibitors, on their own, cause the central cell to become not colorful. These competing morphogens are secreted in all directions so you can think of each color cell as creating a puddle that grows around it, spreading to other cells. Each cell, whether or not it is colorful, is itself the center of its own neighborhood. For now, suppose the neighborhood is a circle. Say this circular neighborhood has a radius of 6 cells. This means that the cell in the center can be affected by other cells that are as far as 6 cells away from it in any direction. So if there is a D cell within this circle and it is secreting morphogens then these morphogens will diffuse as far as this central cell (but a D cell 7 cells away will not directly or immediately affect it). Also, each cells has an inner circle of radius, say, 3 cells. D cells within the inner circle each contributes morphogens of type A (activator) to the central cell. Between the inner circle and the perimeter of the outer circle we have a ring of cells that are more than 3 cells away from the center but 6 or less cells away from the center. Every D cell in this outer ring contributes morphogens of type I (inhibitor) to the central cell. So at every moment each cell is affected both by activator and inhibitor cells in its circle and the question is will it ultimately be activated and become colorful or inhibited and lose its color (or just remain the way it was). The logic is that if the power of the activators is bigger than the power of the inhibitors then the cell will become colorful and vice versa (and if the power is balanced then nothing happens). The idea of "power" is that it's not enough to know how many morphogens there are of each type affecting a cell but one must multiply each cell by its "power" (or you can think of power in terms of the concentration of the morphogens in the inner and outer neighborhoods). Another idea is that since we'll be multiplying both types of morphogens by their power, we might as well just call the power of the activators "1" and the power of the inhibitors "w * 1" or just w. So w is the ratio between the power of the inhibitors and the activators. If w is bigger than 1 that means the power of the inhibitors is greater than that of the activators (for instance, if w = 2 then the inhibitors are each double as strong as each of the activators and if w = 0.5 then the inhibitors are half as strong as the activators). If w = 0.5 and if we have as many inhibitors as we have activators that are affecting the central cell, we would logically assume that the center cells would be more activated than inhibited and so would probably become (or remain) colorful on that step. (A tricky point to notice is that while a certain D-cell is activating a neighboring cell, this same D-cell can be inhibiting a different cell further away.) Here are the rules that summarize what we've been discussing: count up all the D cells in the ring and call this number D*I (for instance 2 inhibitors), and count up all the D cells in the circle of radius three and call this number D*A (for instance, 5 activators). Then compute D*A - w*D*I, and: if it is > 0, set the central cell to D if it is < 0, set the central cell to U if it is = 0, leave the central cell unchanged Note that this computation happens to all cells at the same time. After the first step and once the cells have been set accordingly, the entire business starts over at the next step. Once again, the cells are counted up according to the same rule. The rules have not changed but because some of the D cells are now U and vice versa we might get different counts and because of that -- different results of the "fight" between the A and I morphogens. So what you see is that from step to step the individual cells often change from white (representing D or color cells) to black (representing U or no-color cells) and the overall impression is that the configuration of white and black in the graphics window changes as a whole. But these configurations are not random. You will see how these configurations often take form. Understanding how each cell behaves, as we have explained above, can help understanding how these global patterns take form. All these explanations were for circular neighborhoods. In this model, the neighborhoods may be elliptical instead of circular. This is needed to produce stripes instead of spots. HOW TO USE IT ------------- In order that your first experiment will more-or-less match the explanations above, you should choose to set the initial-density slider to 50% (that gives each cell an equal chance of being white or black to start with and so the whole window will be roughly 50% white), set the INNER-RADIUS-X and INNER-RADIUS-Y sliders to 3 and the OUTER-RADIUS-X and OUTER-RADIUS-Y sliders to 6, and set RATIO to 0.35 (that means the I morphogens are 35% as powerful as the A morphogens). Now press SETUP. (In later experiments you are welcome to change those settings in various combinations.) It will take a while to complete. If you press STEP the model will advance a single step. If you press GO the model will keep stepping indefinitely. It takes a while for the patches to determine their neighborhoods. Because of this, only press SETUP when you change the radius sliders. If you only change the INITIAL-DENSITY and RATIO sliders or if you'd like to run the model again with the same settings, press RESTART instead of SETUP. The RESTART button doesn't ask the patches to recalculate their neighborhoods. THINGS TO NOTICE ---------------- As the model runs, patterns may begin to emerge. Eventually, they stabilize. (Well, sometimes the model will run into an endless flip-flop between two states, but we could call that dynamic stability.) Even when it seems to come to a halt, the model is still running and executing the commands and carrying out the computations, but nothing is changing visibly. This is because for each and every cell the power of activators is equal to that of the inhibitors, so nothing changes. THINGS TO TRY ------------- Run the model with different INITIAL-DENSITY settings. How, if at all, does the value of the INITIAL-DENSITY affect the emergent pattern? Do you get the same pattern? Do you get a different pattern? Does it take longer? Note how fragile the self organization of the cells is to slight changes in parameters. If you hold all other factors and slightly change just the RATIO, from trial to trial, you will note that for small ratios you will invariably get completely white fur and for high ratios you will invariably get completely black fur (why is that?). For ratios in between it fluctuates. That happens partially because the initial setting of black/white coloration has a random element to it (see the RESTART procedure in the code). Try changing the sliders to have different values in the X and Y directions. EXTENDING THE MODEL ------------------- If you find a combination of slider and switch values that consistently give you the fur patterns of a favorite animal, you could create a button, for instance "Zebra," that sets the sliders to those values. That way, if you make several of these, you can go on a virtual safari tour by moving between your favorite animals. One such combination that you could set in a single button could be: INNER-RADIUS-X 3 INNER-RADIUS-Y 3 OUTER-RADIUS-X 6 OUTER-RADIUS-Y 6 INITIAL-DENSITY 50% RATIO 0.35 You could call this, perhaps, Fish. How about adding more colors? What could be the logic here? If you introduced, say, red, you would have to decide on specific conditions under which that color would appear. Also, you'd have to decide how that color influences other cells. RELATED MODELS -------------- The Voting model, in the Social Science section, is based on simpler rules but generates patterns that are similar in some respects. CREDITS AND REFERENCES ---------------------- Various researchers have proposed similar theories of skin pattern formation. The particular variant presented in this model was proposed by David Young. In building this model, we used information on this web site: http://classes.yale.edu/fractals/Panorama/Biology/Leopard/Leopard.html Thanks to Seth Tisue and Dor Abrahamson for their work on this model. To refer to this model in academic publications, please use: Wilensky, U. (2003). NetLogo Fur model. http://ccl.northwestern.edu/netlogo/models/Fur. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. In other publications, please use: Copyright 2003 by Uri Wilensky. All rights reserved. See http://ccl.northwestern.edu/netlogo/models/Fur for terms of use. @#$#@#$#@ default true 0 Polygon -7566196 true true 150 5 40 250 150 205 260 250 ant true 0 Polygon -7566196 true true 136 61 129 46 144 30 119 45 124 60 114 82 97 37 132 10 93 36 111 84 127 105 172 105 189 84 208 35 171 11 202 35 204 37 186 82 177 60 180 44 159 32 170 44 165 60 Polygon -7566196 true true 150 95 135 103 139 117 125 149 137 180 135 196 150 204 166 195 161 180 174 150 158 116 164 102 Polygon -7566196 true true 149 186 128 197 114 232 134 270 149 282 166 270 185 232 171 195 149 186 149 186 Polygon -7566196 true true 225 66 230 107 159 122 161 127 234 111 236 106 Polygon -7566196 true true 78 58 99 116 139 123 137 128 95 119 Polygon -7566196 true true 48 103 90 147 129 147 130 151 86 151 Polygon -7566196 true true 65 224 92 171 134 160 135 164 95 175 Polygon -7566196 true true 235 222 210 170 163 162 161 166 208 174 Polygon -7566196 true true 249 107 211 147 168 147 168 150 213 150 arrow true 0 Polygon -7566196 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 bee true 0 Polygon -256 true false 152 149 77 163 67 195 67 211 74 234 85 252 100 264 116 276 134 286 151 300 167 285 182 278 206 260 220 242 226 218 226 195 222 166 Polygon -16777216 true false 150 149 128 151 114 151 98 145 80 122 80 103 81 83 95 67 117 58 141 54 151 53 177 55 195 66 207 82 211 94 211 116 204 139 189 149 171 152 Polygon -7566196 true true 151 54 119 59 96 60 81 50 78 39 87 25 103 18 115 23 121 13 150 1 180 14 189 23 197 17 210 19 222 30 222 44 212 57 192 58 Polygon -16777216 true false 70 185 74 171 223 172 224 186 Polygon -16777216 true false 67 211 71 226 224 226 225 211 67 211 Polygon -16777216 true false 91 257 106 269 195 269 211 255 Line -1 false 144 100 70 87 Line -1 false 70 87 45 87 Line -1 false 45 86 26 97 Line -1 false 26 96 22 115 Line -1 false 22 115 25 130 Line -1 false 26 131 37 141 Line -1 false 37 141 55 144 Line -1 false 55 143 143 101 Line -1 false 141 100 227 138 Line -1 false 227 138 241 137 Line -1 false 241 137 249 129 Line -1 false 249 129 254 110 Line -1 false 253 108 248 97 Line -1 false 249 95 235 82 Line -1 false 235 82 144 100 bird1 false 0 Polygon -7566196 true true 2 6 2 39 270 298 297 298 299 271 187 160 279 75 276 22 100 67 31 0 bird2 false 0 Polygon -7566196 true true 2 4 33 4 298 270 298 298 272 298 155 184 117 289 61 295 61 105 0 43 boat1 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 158 33 230 157 182 150 169 151 157 156 Polygon -7566196 true true 149 55 88 143 103 139 111 136 117 139 126 145 130 147 139 147 146 146 149 55 boat2 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 157 54 175 79 174 96 185 102 178 112 194 124 196 131 190 139 192 146 211 151 216 154 157 154 Polygon -7566196 true true 150 74 146 91 139 99 143 114 141 123 137 126 131 129 132 139 142 136 126 142 119 147 148 147 boat3 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 158 37 172 45 188 59 202 79 217 109 220 130 218 147 204 156 158 156 161 142 170 123 170 102 169 88 165 62 Polygon -7566196 true true 149 66 142 78 139 96 141 111 146 139 148 147 110 147 113 131 118 106 126 71 box true 0 Polygon -7566196 true true 45 255 255 255 255 45 45 45 butterfly1 true 0 Polygon -16777216 true false 151 76 138 91 138 284 150 296 162 286 162 91 Polygon -7566196 true true 164 106 184 79 205 61 236 48 259 53 279 86 287 119 289 158 278 177 256 182 164 181 Polygon -7566196 true true 136 110 119 82 110 71 85 61 59 48 36 56 17 88 6 115 2 147 15 178 134 178 Polygon -7566196 true true 46 181 28 227 50 255 77 273 112 283 135 274 135 180 Polygon -7566196 true true 165 185 254 184 272 224 255 251 236 267 191 283 164 276 Line -7566196 true 167 47 159 82 Line -7566196 true 136 47 145 81 Circle -7566196 true true 165 45 8 Circle -7566196 true true 134 45 6 Circle -7566196 true true 133 44 7 Circle -7566196 true true 133 43 8 circle false 0 Circle -7566196 true true 35 35 230 person false 0 Circle -7566196 true true 155 20 63 Rectangle -7566196 true true 158 79 217 164 Polygon -7566196 true true 158 81 110 129 131 143 158 109 165 110 Polygon -7566196 true true 216 83 267 123 248 143 215 107 Polygon -7566196 true true 167 163 145 234 183 234 183 163 Polygon -7566196 true true 195 163 195 233 227 233 206 159 sheep false 15 Rectangle -1 true true 90 75 270 225 Circle -1 true true 15 75 150 Rectangle -16777216 true false 81 225 134 286 Rectangle -16777216 true false 180 225 238 285 Circle -16777216 true false 1 88 92 spacecraft true 0 Polygon -7566196 true true 150 0 180 135 255 255 225 240 150 180 75 240 45 255 120 135 thin-arrow true 0 Polygon -7566196 true true 150 0 0 150 120 150 120 293 180 293 180 150 300 150 truck-down false 0 Polygon -7566196 true true 225 30 225 270 120 270 105 210 60 180 45 30 105 60 105 30 Polygon -8716033 true false 195 75 195 120 240 120 240 75 Polygon -8716033 true false 195 225 195 180 240 180 240 225 truck-left false 0 Polygon -7566196 true true 120 135 225 135 225 210 75 210 75 165 105 165 Polygon -8716033 true false 90 210 105 225 120 210 Polygon -8716033 true false 180 210 195 225 210 210 truck-right false 0 Polygon -7566196 true true 180 135 75 135 75 210 225 210 225 165 195 165 Polygon -8716033 true false 210 210 195 225 180 210 Polygon -8716033 true false 120 210 105 225 90 210 turtle true 0 Polygon -7566196 true true 138 75 162 75 165 105 225 105 225 142 195 135 195 187 225 195 225 225 195 217 195 202 105 202 105 217 75 225 75 195 105 187 105 135 75 142 75 105 135 105 wolf false 0 Rectangle -7566196 true true 15 105 105 165 Rectangle -7566196 true true 45 90 105 105 Polygon -7566196 true true 60 90 83 44 104 90 Polygon -16777216 true false 67 90 82 59 97 89 Rectangle -1 true false 48 93 59 105 Rectangle -16777216 true false 51 96 55 101 Rectangle -16777216 true false 0 121 15 135 Rectangle -16777216 true false 15 136 60 151 Polygon -1 true false 15 136 23 149 31 136 Polygon -1 true false 30 151 37 136 43 151 Rectangle -7566196 true true 105 120 263 195 Rectangle -7566196 true true 108 195 259 201 Rectangle -7566196 true true 114 201 252 210 Rectangle -7566196 true true 120 210 243 214 Rectangle -7566196 true true 115 114 255 120 Rectangle -7566196 true true 128 108 248 114 Rectangle -7566196 true true 150 105 225 108 Rectangle -7566196 true true 132 214 155 270 Rectangle -7566196 true true 110 260 132 270 Rectangle -7566196 true true 210 214 232 270 Rectangle -7566196 true true 189 260 210 270 Line -7566196 true 263 127 281 155 Line -7566196 true 281 155 281 192 wolf-left false 3 Polygon -6524078 true true 117 97 91 74 66 74 60 85 36 85 38 92 44 97 62 97 81 117 84 134 92 147 109 152 136 144 174 144 174 103 143 103 134 97 Polygon -6524078 true true 87 80 79 55 76 79 Polygon -6524078 true true 81 75 70 58 73 82 Polygon -6524078 true true 99 131 76 152 76 163 96 182 104 182 109 173 102 167 99 173 87 159 104 140 Polygon -6524078 true true 107 138 107 186 98 190 99 196 112 196 115 190 Polygon -6524078 true true 116 140 114 189 105 137 Rectangle -6524078 true true 109 150 114 192 Rectangle -6524078 true true 111 143 116 191 Polygon -6524078 true true 168 106 184 98 205 98 218 115 218 137 186 164 196 176 195 194 178 195 178 183 188 183 169 164 173 144 Polygon -6524078 true true 207 140 200 163 206 175 207 192 193 189 192 177 198 176 185 150 Polygon -6524078 true true 214 134 203 168 192 148 Polygon -6524078 true true 204 151 203 176 193 148 Polygon -6524078 true true 207 103 221 98 236 101 243 115 243 128 256 142 239 143 233 133 225 115 214 114 wolf-right false 3 Polygon -6524078 true true 170 127 200 93 231 93 237 103 262 103 261 113 253 119 231 119 215 143 213 160 208 173 189 187 169 190 154 190 126 180 106 171 72 171 73 126 122 126 144 123 159 123 Polygon -6524078 true true 201 99 214 69 215 99 Polygon -6524078 true true 207 98 223 71 220 101 Polygon -6524078 true true 184 172 189 234 203 238 203 246 187 247 180 239 171 180 Polygon -6524078 true true 197 174 204 220 218 224 219 234 201 232 195 225 179 179 Polygon -6524078 true true 78 167 95 187 95 208 79 220 92 234 98 235 100 249 81 246 76 241 61 212 65 195 52 170 45 150 44 128 55 121 69 121 81 135 Polygon -6524078 true true 48 143 58 141 Polygon -6524078 true true 46 136 68 137 Polygon -6524078 true true 45 129 35 142 37 159 53 192 47 210 62 238 80 237 Line -16777216 false 74 237 59 213 Line -16777216 false 59 213 59 212 Line -16777216 false 58 211 67 192 Polygon -6524078 true true 38 138 66 149 Polygon -6524078 true true 46 128 33 120 21 118 11 123 3 138 5 160 13 178 9 192 0 199 20 196 25 179 24 161 25 148 45 140 Polygon -6524078 true true 67 122 96 126 63 144 @#$#@#$#@ NetLogo 2.0beta5 @#$#@#$#@ @#$#@#$#@ @#$#@#$#@