globals [row] ;; this variable is the current row processed by the CA ;; the following patch variables refer to the colors of the 3 focal patches in a neighborhood patches-own [left-pcolor center-pcolor right-pcolor] ;; initializes the model to setup ca set row screen-edge-y set (pcolor-of patch-at 0 screen-edge-y) yellow ;; create initial black cell in the top center of the screen end ;; runs the CA for one screenful to go if (row = (- screen-edge-y)) [ stop ] ;; stop at the last row ask patches with [pycor = row] [ do-rule ] set row (row - 1) end ;; set the state of the patch below by applying rule 110 to do-rule ;; patch procedure ;; assign values to patch variables based on current state of the row set left-pcolor pcolor-of patch-at -1 0 set center-pcolor pcolor set right-pcolor pcolor-of patch-at 1 0 ifelse ((left-pcolor = black and center-pcolor = black and right-pcolor = black) or ;; evaluate rule 110 (left-pcolor = yellow and center-pcolor = black and right-pcolor = black) or (left-pcolor = yellow and center-pcolor = yellow and right-pcolor = yellow)) [ set pcolor-of patch-at 0 -1 black ] [ set pcolor-of patch-at 0 -1 yellow ] end ;; sets up to run the next screenful (it will wrap) to setup-continue ;; copy cells from the bottom of the screen to the top ask patches with [pycor = screen-edge-y] [ set pcolor (pcolor-of patch pxcor (- screen-edge-y)) ] ask patches with [pycor != screen-edge-y] ;; clear the rest of the screen [ set pcolor black ] set row screen-edge-y ;; reset the row to the top position end ; *** NetLogo Model Copyright Notice *** ; ; This model was created as part of the project: ; PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN ; CLASSROOMS. The project gratefully acknowledges the support of the ; National Science Foundation (REPP program) -- grant number REC #9814682. ; ; Copyright 2002 by Uri Wilensky. Updated 2002. All rights reserved. ; ; Permission to use, modify or redistribute this model is hereby granted, ; provided that both of the following requirements are followed: ; a) this copyright notice is included. ; b) this model will not be redistributed for profit without permission ; from Uri Wilensky. ; Contact Uri Wilensky for appropriate licenses for redistribution for ; profit. ; ; To refer to this model in academic publications, please use: ; Wilensky, U. (2002). NetLogo CA 1D Rule 110 model. ; http://ccl.northwestern.edu/netlogo/models/CA1DRule110. ; Center for Connected Learning and Computer-Based Modeling, ; Northwestern University, Evanston, IL. ; ; In other publications, please use: ; Copyright 1998 by Uri Wilensky. All rights reserved. See ; http://ccl.northwestern.edu/netlogo/models/CA1DRule110 ; for terms of use. ; ; *** End of NetLogo Model Copyright Notice *** @#$#@#$#@ GRAPHICS-WINDOW 161 11 653 284 120 60 2.0 0 10 1 1 1 CC-WINDOW 160 301 643 421 Command Center BUTTON 17 88 117 121 NIL setup NIL 1 T OBSERVER T BUTTON 15 250 115 283 NIL go T 1 T OBSERVER NIL BUTTON 16 185 116 218 NIL setup-continue NIL 1 T OBSERVER T TEXTBOX 26 49 116 82 Start from a\nsingle cell TEXTBOX 14 141 129 179 Start from the end\nof the previous run @#$#@#$#@ WHAT IS IT? ----------- This program models one particular one-dimensional cellular automaton -- the one known as "rule 110". A cellular automaton (aka CA) is a computational machine that performs actions based on certain rules. It can be thought of as a "board" which is divided into cells (such as the square cells of a checkerboard). Each cell can be either on or off. This is called the "state" of the cell. The board is initialized with some cells on and some off. A clock is then started and at each "tick" of the clock the rules are "fired" and this results in some cells turning "on" and some turning "off". There are many kinds of cellular automata. In this model, we explore a one-dimensional CA -- the simplest type of CA. In this case of one-dimensional cellular automata, each cell checks the state of itself and its neighbors to the left and right, and then sets the cell below itself to either "on" or "off", depending upon the rule. This is done in parallel and continues until the bottom of the board. This model is one of a collection of 1D CA models. It is meant for the beginning user. If you have experience with CAs, we suggest you check out a more sophisticated model such as CA 1D Elementary. In his book, "A New Kind of Science", Stephen Wolfram argues that simple computational devices such as CAs lie at the heart of nature's patterns and that CAs are a better tool than mathematical equations for the purpose of scientifically describing the world. HOW IT WORKS ------------ As the CA computes, each patch checks the color of itself and the patches directly to the left and right of it, and then paints the patch below it according to Rule 110: | Y Y Y Y Y B Y B Y Y B B | B Y Y B | B Y Y B Y B B B Y B B B | Y Y Y B For example, if we have a Rule 110 CA, and the current cell is yellow and its left neighbor is black and its right neighbor is black, the cell below it is painted yellow. HOW TO USE IT ------------- Initialization & Running: - SETUP initializes the model with a single cell on in the center. - SETUP-CONTINUE copies the last row of the previous run to the top so that you can continue running the model when you click GO. - GO begins running the model with the currently set rule. It continues until the end of the screen. THINGS TO NOTICE ---------------- Although the rules are very simple, extremely complex patterns emerge in Rule 110. These patterns are not highly regular nor are they completely random. Note that the pictures generated by this model do not exactly match the pictures in Wolfram's book, "A New Kind of Science". That's because Wolfram's book computes the CA as an infinite grid while the NetLogo model "wraps" when it hits a horizontal screen boundary. To get pictures closer to the ones in the book, you may need to increase the size of the NetLogo graphics screen. You can increase the size of the screen up to the available memory on your computer. However, the larger the screen, the longer time it will take NetLogo to compute and display the results. THINGS TO TRY ------------- Try changing the dimensions of the graphics window either to see more of the CA's pattern or to focus in on a region of interest. What happens to the regularity when SETUP-CONTINUE is used a number of times? Why do you suppose that is? (Note that in this model, the CA wraps around the sides.) Is there any consistent pattern to the way this CA evolves? If you look at a vertical line, are there more yellow or black cells? Can you predict what the color of the nth cell on a line will be? EXTENDING THE MODEL ------------------- What if you wanted to observe the behavior of a CA over many screens without having to click continue at the end of every screen? Simply replace the "stop" with "setup-continue' in the go procedure: | if (row = (- screen-edge-y)) | [ stop ] with | if (row = (- screen-edge-y)) | [ setup-continue ] What if a cell's neighborhood was five -- two to the left, itself, and two to the right? Classical CAs use an "infinite board". The CA shown here "wraps" when it reaches the edge of the graphics screen (sometimes known as a periodic CA or CA with periodic boundary condition). How would you implement in NetLogo a CA that comes closer to the infinite board? Try making a two-dimensional cellular automaton. The neighborhood could be the eight cells around it, or just the cardinal cells (the cells to the right, left, above, and below). RELATED MODELS -------------- Life - an example of a two-dimensional cellular automaton CA 1D Rule 30 - the basic rule 30 model CA 1D Rule 30 Turtle - the basic rule 30 model implemented using turtles CA 1D Rule 90 - the basic rule 90 model CA 1D Rule 250 - the basic rule 250 model CA 1D Elementary - a model that shows all 256 possible simple 1D cellular automata CA 1D Totalistic - a model that shows all 2,187 possible 1D 3-color totalistic cellular automata. REFERENCES AND CREDITS ----------------------- Thanks to Ethan Bakshy for his help with this model. The first cellular automaton was conceived by John Von Neumann in the late 1940's for his analysis of machine reproduction under the suggestion of Stanislaw M. Ulam. It was later completed and documented by Arthur W. Burks in the 1960's. Other two-dimensional cellular automata, and particularly the game of "Life," were explored by John Conway in the 1970's. Many others have since researched CA's. In the late 1970's and 1980's Chris Langton, Tom Toffoli and Stephen Wolfram did some notable research. Wolfram classified all 256 one-dimensional two-state single-neighbor cellular automata. In his recent book, "A New Kind of Science," Wolfram presents many examples of cellular automata and argues for their fundamental importance in doing science. See also: Von Neumann, J. and Burks, A. W., Eds, 1966. Theory of Self-Reproducing Automata. University of Illinois Press, Champaign, IL. Toffoli, T. 1977. Computation and construction universality of reversible cellular automata. J. Comput. Syst. Sci. 15, 213-231. Langton, C. 1984. Self-reproduction in cellular automata. Physica D 10, 134-144 Wolfram, S. 1986. Theory and Applications of Cellular Automata: Including Selected Papers 1983-1986. World Scientific Publishing Co., Inc., River Edge, NJ. Bar-Yam, Y. 1997. Dynamics of Complex Systems. Perseus Press. Reading, Ma. Wolfram, S. 2002. A New Kind of Science. Wolfram Media Inc. Champaign, IL. See chapters 2 and 3 for more information on 1 Dimensional CAs See index for more information specifically about Rule 110. To refer to this model in academic publications, please use: Wilensky, U. (2002). NetLogo CA 1D Rule 110 model. http://ccl.northwestern.edu/netlogo/models/CA1DRule110. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. In other publications, please use: Copyright 2002 by Uri Wilensky. All rights reserved. See http://ccl.northwestern.edu/netlogo/models/CA1DRule110 for terms of use. @#$#@#$#@ default true 0 Polygon -7566196 true true 150 5 40 250 150 205 260 250 ant true 0 Polygon -7566196 true true 136 61 129 46 144 30 119 45 124 60 114 82 97 37 132 10 93 36 111 84 127 105 172 105 189 84 208 35 171 11 202 35 204 37 186 82 177 60 180 44 159 32 170 44 165 60 Polygon -7566196 true true 150 95 135 103 139 117 125 149 137 180 135 196 150 204 166 195 161 180 174 150 158 116 164 102 Polygon -7566196 true true 149 186 128 197 114 232 134 270 149 282 166 270 185 232 171 195 149 186 149 186 Polygon -7566196 true true 225 66 230 107 159 122 161 127 234 111 236 106 Polygon -7566196 true true 78 58 99 116 139 123 137 128 95 119 Polygon -7566196 true true 48 103 90 147 129 147 130 151 86 151 Polygon -7566196 true true 65 224 92 171 134 160 135 164 95 175 Polygon -7566196 true true 235 222 210 170 163 162 161 166 208 174 Polygon -7566196 true true 249 107 211 147 168 147 168 150 213 150 arrow true 0 Polygon -7566196 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 bee true 0 Polygon -256 true false 152 149 77 163 67 195 67 211 74 234 85 252 100 264 116 276 134 286 151 300 167 285 182 278 206 260 220 242 226 218 226 195 222 166 Polygon -16777216 true false 150 149 128 151 114 151 98 145 80 122 80 103 81 83 95 67 117 58 141 54 151 53 177 55 195 66 207 82 211 94 211 116 204 139 189 149 171 152 Polygon -7566196 true true 151 54 119 59 96 60 81 50 78 39 87 25 103 18 115 23 121 13 150 1 180 14 189 23 197 17 210 19 222 30 222 44 212 57 192 58 Polygon -16777216 true false 70 185 74 171 223 172 224 186 Polygon -16777216 true false 67 211 71 226 224 226 225 211 67 211 Polygon -16777216 true false 91 257 106 269 195 269 211 255 Line -1 false 144 100 70 87 Line -1 false 70 87 45 87 Line -1 false 45 86 26 97 Line -1 false 26 96 22 115 Line -1 false 22 115 25 130 Line -1 false 26 131 37 141 Line -1 false 37 141 55 144 Line -1 false 55 143 143 101 Line -1 false 141 100 227 138 Line -1 false 227 138 241 137 Line -1 false 241 137 249 129 Line -1 false 249 129 254 110 Line -1 false 253 108 248 97 Line -1 false 249 95 235 82 Line -1 false 235 82 144 100 bird1 false 0 Polygon -7566196 true true 2 6 2 39 270 298 297 298 299 271 187 160 279 75 276 22 100 67 31 0 bird2 false 0 Polygon -7566196 true true 2 4 33 4 298 270 298 298 272 298 155 184 117 289 61 295 61 105 0 43 boat1 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 158 33 230 157 182 150 169 151 157 156 Polygon -7566196 true true 149 55 88 143 103 139 111 136 117 139 126 145 130 147 139 147 146 146 149 55 boat2 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 157 54 175 79 174 96 185 102 178 112 194 124 196 131 190 139 192 146 211 151 216 154 157 154 Polygon -7566196 true true 150 74 146 91 139 99 143 114 141 123 137 126 131 129 132 139 142 136 126 142 119 147 148 147 boat3 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 158 37 172 45 188 59 202 79 217 109 220 130 218 147 204 156 158 156 161 142 170 123 170 102 169 88 165 62 Polygon -7566196 true true 149 66 142 78 139 96 141 111 146 139 148 147 110 147 113 131 118 106 126 71 box true 0 Polygon -7566196 true true 45 255 255 255 255 45 45 45 butterfly1 true 0 Polygon -16777216 true false 151 76 138 91 138 284 150 296 162 286 162 91 Polygon -7566196 true true 164 106 184 79 205 61 236 48 259 53 279 86 287 119 289 158 278 177 256 182 164 181 Polygon -7566196 true true 136 110 119 82 110 71 85 61 59 48 36 56 17 88 6 115 2 147 15 178 134 178 Polygon -7566196 true true 46 181 28 227 50 255 77 273 112 283 135 274 135 180 Polygon -7566196 true true 165 185 254 184 272 224 255 251 236 267 191 283 164 276 Line -7566196 true 167 47 159 82 Line -7566196 true 136 47 145 81 Circle -7566196 true true 165 45 8 Circle -7566196 true true 134 45 6 Circle -7566196 true true 133 44 7 Circle -7566196 true true 133 43 8 circle false 0 Circle -7566196 true true 35 35 230 person false 0 Circle -7566196 true true 155 20 63 Rectangle -7566196 true true 158 79 217 164 Polygon -7566196 true true 158 81 110 129 131 143 158 109 165 110 Polygon -7566196 true true 216 83 267 123 248 143 215 107 Polygon -7566196 true true 167 163 145 234 183 234 183 163 Polygon -7566196 true true 195 163 195 233 227 233 206 159 spacecraft true 0 Polygon -7566196 true true 150 0 180 135 255 255 225 240 150 180 75 240 45 255 120 135 thin-arrow true 0 Polygon -7566196 true true 150 0 0 150 120 150 120 293 180 293 180 150 300 150 truck-down false 0 Polygon -7566196 true true 225 30 225 270 120 270 105 210 60 180 45 30 105 60 105 30 Polygon -8716033 true false 195 75 195 120 240 120 240 75 Polygon -8716033 true false 195 225 195 180 240 180 240 225 truck-left false 0 Polygon -7566196 true true 120 135 225 135 225 210 75 210 75 165 105 165 Polygon -8716033 true false 90 210 105 225 120 210 Polygon -8716033 true false 180 210 195 225 210 210 truck-right false 0 Polygon -7566196 true true 180 135 75 135 75 210 225 210 225 165 195 165 Polygon -8716033 true false 210 210 195 225 180 210 Polygon -8716033 true false 120 210 105 225 90 210 turtle true 0 Polygon -7566196 true true 138 75 162 75 165 105 225 105 225 142 195 135 195 187 225 195 225 225 195 217 195 202 105 202 105 217 75 225 75 195 105 187 105 135 75 142 75 105 135 105 wolf-left false 3 Polygon -6524078 true true 117 97 91 74 66 74 60 85 36 85 38 92 44 97 62 97 81 117 84 134 92 147 109 152 136 144 174 144 174 103 143 103 134 97 Polygon -6524078 true true 87 80 79 55 76 79 Polygon -6524078 true true 81 75 70 58 73 82 Polygon -6524078 true true 99 131 76 152 76 163 96 182 104 182 109 173 102 167 99 173 87 159 104 140 Polygon -6524078 true true 107 138 107 186 98 190 99 196 112 196 115 190 Polygon -6524078 true true 116 140 114 189 105 137 Rectangle -6524078 true true 109 150 114 192 Rectangle -6524078 true true 111 143 116 191 Polygon -6524078 true true 168 106 184 98 205 98 218 115 218 137 186 164 196 176 195 194 178 195 178 183 188 183 169 164 173 144 Polygon -6524078 true true 207 140 200 163 206 175 207 192 193 189 192 177 198 176 185 150 Polygon -6524078 true true 214 134 203 168 192 148 Polygon -6524078 true true 204 151 203 176 193 148 Polygon -6524078 true true 207 103 221 98 236 101 243 115 243 128 256 142 239 143 233 133 225 115 214 114 wolf-right false 3 Polygon -6524078 true true 170 127 200 93 231 93 237 103 262 103 261 113 253 119 231 119 215 143 213 160 208 173 189 187 169 190 154 190 126 180 106 171 72 171 73 126 122 126 144 123 159 123 Polygon -6524078 true true 201 99 214 69 215 99 Polygon -6524078 true true 207 98 223 71 220 101 Polygon -6524078 true true 184 172 189 234 203 238 203 246 187 247 180 239 171 180 Polygon -6524078 true true 197 174 204 220 218 224 219 234 201 232 195 225 179 179 Polygon -6524078 true true 78 167 95 187 95 208 79 220 92 234 98 235 100 249 81 246 76 241 61 212 65 195 52 170 45 150 44 128 55 121 69 121 81 135 Polygon -6524078 true true 48 143 58 141 Polygon -6524078 true true 46 136 68 137 Polygon -6524078 true true 45 129 35 142 37 159 53 192 47 210 62 238 80 237 Line -16777216 false 74 237 59 213 Line -16777216 false 59 213 59 212 Line -16777216 false 58 211 67 192 Polygon -6524078 true true 38 138 66 149 Polygon -6524078 true true 46 128 33 120 21 118 11 123 3 138 5 160 13 178 9 192 0 199 20 196 25 179 24 161 25 148 45 140 Polygon -6524078 true true 67 122 96 126 63 144 @#$#@#$#@ NetLogo 2.0beta4 @#$#@#$#@ setup repeat screen-size-y - 1 [ go ] @#$#@#$#@ @#$#@#$#@