globals [ row ;; current row we are now calculating done? ;; flag set to allow you to press the go button multiple times tick ;; number of times through the go loop ] patches-own [on?] ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; SETUP PROCEDURES ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; setup general working environment. the other setup procedures call this. to setup-general cg set row screen-edge-y ;; reset current row set done? false end ;; setup a random selection of patches in the top row to have on? true to setup-random setup-general reset-plot ;; randomly place cells across the top of the screen ask patches with [pycor = row] [ set on? ((random-float 100) < density) color-patch ] end ;; setup the patches to continue a particular model run. this will copy the bottom ;; row of patches to the top row. to setup-continue locals [ on?-list ] set on?-list [] ;; make sure go has already been called if not done? [ stop ] if auto-clear? [ clear-plot set-plot-x-range tick (tick + screen-size-y) ] set on?-list values-from patches with [ pycor = row ] [ on? ] ;; copy states from bottom row to list setup-general ask patches with [ pycor = row ] [ set on? item (pxcor + screen-edge-x) on?-list ;; copy states from list to top row color-patch ] set done? false end ;; reset the plot to reset-plot set tick 0 clear-plot end ;; setup the sliders to have specific values that are interesting to study to setup-example if( example = 1 ) [ set III 0 set IIO 50 set IOI 50 set IOO 50 set OII 50 set OIO 50 set OOI 50 set OOO 0 ] if( example = 2 ) [ set III 0 set IIO 50 set IOI 0 set IOO 50 set OII 50 set OIO 100 set OOI 50 set OOO 100 ] if( example = 3 ) [ set III 0 set IIO 50 set IOI 50 set IOO 66 set OII 50 set OIO 50 set OOI 100 set OOO 0 ] if( example = 4 ) [ set III 0 set IIO 50 set IOI 50 set IOO 66 set OII 50 set OIO 50 set OOI 50 set OOO 0 ] if( example = 5 ) [ set III 0 set IIO 100 set IOI 0 set IOO 66 set OII 100 set OIO 0 set OOI 66 set OOO 0 ] set density 25 setup-random end ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; RUNTIME PROCEDURES ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; run the model. this applies the current rules to the patches with pycor equal to row. ;; if that row of patches is the bottom row and auto-continue? is true, we will setup the ;; model to continue. to go ;; if the end has been reached, continue from the top or stop if (row = (- screen-edge-y)) [ ifelse auto-continue? [ ;; if we are stuck in an absorbing state, there is not reason to continue ifelse( ((sum (values-from patches with [pycor = row] [true-false-to-int on?]) = 0) and OOO = 0.0) or ((sum (values-from patches with [pycor = row] [true-false-to-int on?]) = screen-size-x) and III = 100.0)) [ stop ] [ set done? true display ;; ensure full screen gets drawn before we clear it setup-continue ] ] [ ;; if a run has already been completed, continue with another. otherwise just stop ifelse done? [ setup-continue ] [ set done? true stop ] ] ] ask patches with [ pycor = row ] ;; apply rule [ do-rule ] if plot? [plot-entropy] set row (row - 1) ask patches with [ pycor = row ] ;; color in changed cells [ color-patch ] set tick (tick + 1) end ;; the patch will set the on? value of the patch below it based on three factors, ;; 1) its own on? value ;; 2) the on? values of the patches to the left and right of it ;; 3) the current settings for the rules to do-rule ;; patch procedure locals [ left-on? right-on? ] set left-on? on?-of patch-at -1 0 ;; set to true if the patch to the left is on set right-on? on?-of patch-at 1 0 ;; set to true if the patch to the right is on ;; each of these lines checks the local area and (possibly) ;; sets the lower cell according to the corresponding switch set on?-of patch-at 0 -1 (III != 0 and left-on? and on? and right-on? and (random-float 100) < III) or (IIO != 0 and left-on? and on? and (not right-on?) and (random-float 100) < IIO) or (IOI != 0 and left-on? and (not on?) and right-on? and (random-float 100) < IOI) or (IOO != 0 and left-on? and (not on?) and (not right-on?) and (random-float 100) < IOO) or (OII != 0 and (not left-on?) and on? and right-on? and (random-float 100) < OII) or (OIO != 0 and (not left-on?) and on? and (not right-on?) and (random-float 100) < OIO) or (OOI != 0 and (not left-on?) and (not on?) and right-on? and (random-float 100) < OOI) or (OOO != 0 and (not left-on?) and (not on?) and (not right-on?) and (random-float 100) < OOO) end ;; plot topologic / metric entropy to plot-entropy locals [ counter-list ;; a 16 element list storing the number of occurrences of each distinct 4-patch pattern prob-list ;; a list storing the probabilities of each pattern occurring i ;; an index for storing where in the row we are currently doing the calculations for an-index ;; an index in counter-list ] set i (- screen-edge-x) set counter-list n-values 16 [0] ;; fill the counter-list with the appropriate values. that is to say, count ;; the number of occurrences of each distinct 4-patch pattern of on? values. while [ i < screen-edge-x ] [ set an-index binary-list-to-index (patches-to-binary-list i) set counter-list replace-item an-index counter-list (item an-index counter-list + 1) set i (i + 1) ] ;; determine the probabilities of each pattern occurring set prob-list map [? / (sum counter-list)] counter-list ;; X = 4 (correlation length): size of subsequences analyzed ;; topological entropy = 1/X * the log of the sum of the probabilities rounded up set-current-plot-pen "topologic" plotxy tick 1 / 4 * (log (sum (map [1] (filter [? > 0] prob-list))) 2) ;; metric entropy = -1/X * the sum of the products of each probability and its log set-current-plot-pen "metric" plotxy tick -1 / 4 * sum ( map[? * log ? 2] (filter [? > 0] prob-list) ) end ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; UTILITY PROCEDURES ;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; report the base 10 equivalent of a binary number represented by a list of 0's and 1's. ;; in the list, the 0th item is the highest power of 2 and the highest item is the lowest power. to-report binary-list-to-index [binary-list] locals[ i list-length list-sum ] set list-sum 0 set i 0 set list-length length binary-list while [i < list-length ] [ set list-sum list-sum + (2 ^ i) * ((item (list-length - i - 1) binary-list) mod 2) set i i + 1 ] report list-sum end ;; report a list of binary digits based on the values of on? for the current row's ;; patches starting at 'offset' to-report patches-to-binary-list [offset] locals [binary-list] set binary-list [] set binary-list lput (value-from patch-at offset row [true-false-to-int on?]) binary-list set binary-list lput (value-from patch-at (offset + 1) row [true-false-to-int on?]) binary-list set binary-list lput (value-from patch-at (offset + 2) row [true-false-to-int on?]) binary-list set binary-list lput (value-from patch-at (offset + 3) row [true-false-to-int on?]) binary-list report binary-list end ;; convert true/false values to 1/0 to-report true-false-to-int [b] ifelse b [ report 1 ] [ report 0 ] end ;; color the patch based on whether on? is true or false to color-patch ;; patch procedure ifelse on? [ set pcolor on-color ] [ set pcolor off-color ] end ; *** NetLogo Model Copyright Notice *** ; ; This model was created as part of the project: CONNECTED MATHEMATICS: ; MAKING SENSE OF COMPLEX PHENOMENA THROUGH BUILDING OBJECT-BASED PARALLEL ; MODELS (OBPML). The project gratefully acknowledges the support of the ; National Science Foundation (Applications of Advanced Technologies ; Program) -- grant numbers RED #9552950 and REC #9632612. ; ; Copyright 2003 by Uri Wilensky. All rights reserved. ; ; Permission to use, modify or redistribute this model is hereby granted, ; provided that both of the following requirements are followed: ; a) this copyright notice is included. ; b) this model will not be redistributed for profit without permission ; from Uri Wilensky. ; Contact Uri Wilensky for appropriate licenses for redistribution for ; profit. ; ; To refer to this model in academic publications, please use: ; Wilensky, U. (2003). NetLogo CA Stochastic model ; http://ccl.northwestern.edu/netlogo/models/CAStochastic ; Center for Connected Learning and Computer-Based Modeling, ; Northwestern University, Evanston, IL. ; ; In other publications, please use: ; Copyright 1998 by Uri Wilensky. All rights reserved. See ; http://ccl.publications.edu/netlogo/models/CAStochastic ; Center for Connected Learning and Computer-Based Modeling, ; Northwestern University, Evanston, IL ; for terms of use. ; ; *** End of NetLogo Model Copyright Notice *** @#$#@#$#@ GRAPHICS-WINDOW 454 10 786 363 80 80 2.0 0 10 1 1 1 CC-WINDOW 12 394 315 536 Command Center BUTTON 11 98 110 131 Go go T 1 T OBSERVER NIL SLIDER 11 159 116 192 III III 0.0 100.0 0.0 0.5 1 % SLIDER 119 159 224 192 IIO IIO 0.0 100.0 50.0 0.5 1 % SLIDER 11 194 116 227 IOI IOI 0.0 100 50.0 0.5 1 % SLIDER 119 194 224 227 IOO IOO 0 100.0 50.0 0.5 1 % SLIDER 11 229 116 262 OII OII 0.0 100.0 50.0 0.5 1 % SLIDER 119 229 224 262 OIO OIO 0.0 100.0 50.0 0.5 1 % SLIDER 11 264 116 297 OOI OOI 0.0 100.0 50.0 0.5 1 % SLIDER 119 264 224 297 OOO OOO 0.0 100.0 0.0 0.5 1 % SLIDER 130 16 248 49 density density 0.0 100.0 25.0 0.5 1 % BUTTON 11 16 130 49 Setup Random setup-random NIL 1 T OBSERVER T SWITCH 110 98 248 131 auto-continue? auto-continue? 1 1 -1000 TEXTBOX 21 141 210 159 Probability Cell Turns On: SLIDER 12 358 184 391 off-color off-color 0.0 100.0 0.0 0.5 1 NIL SLIDER 12 323 184 356 on-color on-color 0.0 100.0 95.0 0.5 1 NIL TEXTBOX 24 305 114 323 Colors: BUTTON 11 51 130 84 Setup Example setup-example NIL 1 T OBSERVER T SLIDER 130 51 248 84 example example 1 5 1 1 1 NIL PLOT 318 365 786 536 entropy-plot time entropy 0.0 320.0 0.0 1.0 true true PENS "topologic" 1.0 0 -8716033 true "metric" 1.0 0 -44544 true SWITCH 318 298 438 331 plot? plot? 0 1 -1000 SWITCH 318 330 438 363 auto-clear? auto-clear? 0 1 -1000 @#$#@#$#@ WHAT IS IT? ----------- This is a one-dimensional stochastic cellular automaton. (See the CA 1D Elementary model if you are unfamiliar with cellular automata.) Unlike most cellular automata, whose behavior is deterministic, the behavior of a stochastic cellular automaton is probabilistic. Stochastic cellular automata are models of "noisy" systems in which processes do not function exactly as expected, like most processes found in natural systems. The behavior of these cellular automata tend to be very rich and complex, often forming self-similar tree-like or chaotic behavior. They are capable of mimicking many phenomena found in nature such as crystal growth, boiling, and turbulence. HOW IT WORKS ------------ At each time step, every cell in the current row evaluates the state of itself and its immediate neighbors to the right and left. There are 8 possible on/off rule configurations for every 3-cell neighborhood, each with a certain probability of turning on the cell below it at the next time step. The rules are applied accordingly, and the next state of the cellular automaton appears in the row directly below, creating a space vs. time view of the cellular automaton's evolution. HOW TO USE IT ------------- Set up: - SETUP RANDOM initializes the model with a percentage of the cells "on". The percentage on is determined by the DENSITY slider. - SETUP EXAMPLE initializes the rule settings according to the EXAMPLE slider - AUTO-CONTINUE? automatically wraps to the top once it reaches the last row when the switch is on - GO begins running the model with the currently set rule. It runs until the end of the screen. If GO is pressed after it has completed, it will wrap to the top and continue. - ON-COLOR & OFF-COLOR set the "on" and "off" cell colors respectively. Rule Setup: There are 8 sliders, the names of which correspond to cell states. "O" means off, "I" means on. For example, the upper-right slider is called "IIO," corresponding to the state where a cell and its left neighbor is on, and its right neighbor is off. (NOTE: the switch names are composed of the letters "I" and "O", not the numbers zero or one, because NetLogo switches can't have numbers for names.) If this slider is set to 70%, then the following rule is created: when a cell is on, its left neighbor cell is on and its right neighbor cell is off, then there is a 70% chance the cell below it will be set "on" at the next time step, otherwise the cell below it will be set to "off" at the next time step. Plot: This plot measures two types of entropy, or disorder in a system. Cellular automata can produce patterns with varying degrees of randomness. If a pattern is perfectly random, each subsequence occurs with an equal probability, and the entropy is 1. The more likely certain subsequences occur, the lower the entropy. If a pattern is perfectly ordered, then the entropy is 0. In this plot, 4-cell subsequences ("correlation length") are used to calculate the entropy. The first type of entropy is the spatial topologic entropy, which measures how many subsequences are present. The second type of entropy, spatial metric entropy, measures the probability that all subsequences occur with the same frequency. Plot Configuration: - PLOT? switches plot on or off - AUTO-CLEAR? if on, the plot is automatically cleared after each complete screen of cellular automata evolution THINGS TO NOTICE ---------------- Why is it a better idea to have a density that isn't too big or too small? What is the relationship between the cellular automata display and the entropy plot? How does the size of the black triangles affect the entropy? What kinds of configurations lead to long lived chaotic behavior? THINGS TO TRY ------------- You may want to set AUTO-CONTINUE? to 'on' in order to study the long-term behavior of each cellular automaton configuration. Also, if you have a fast enough computer, you may want to increase the size of the display screen in order to get a better view of the "big picture." If you turn the plot off, it will also increase the speed of your model. Change the example slider to 1, and click SETUP EXAMPLE. Click GO and experiment with the III slider, running each configuration a couple of times: - What happens when III is set to 0%? - - Why do you think the cellular automaton always ends up in the same uniform, or "absorbing" state? - As you increase III, what happens to the density of the trees that are formed? - - Does this seem to effect the time it takes to reach an absorbing state? - What happens when III is set to 100%? - - It seems very unlikely that this configuration will reach an absorbing state, but is it possible? - - Why or why not? Change the example slider to 2, and click SETUP EXAMPLE. Click GO and experiment with the IOO slider, running each configuration a couple of times: - Why does this configuration want to have either vertical or horizontal stripes? - What happens when you change IOO to 0% or 100%? - - Why does it always end up producing a majority of horizontal or vertical stripes? - How does changing the OOI slider in conjunction with the IOO slider affect the model? Change the example slider to 3, and click SETUP EXAMPLE. Click GO and experiment with the IOO slider, running each configuration a couple of times: - As you change IOO, what happens to the outer shape of the cellular automaton? - - What happens to the shape of the triangles inside? - - How is the value of the IOO slider related to the spread of on cells? - - What should IOO be set to if you want perfectly symmetric triangles? - Set IOO to 100%, and experiment with the OOI slider in a similar fashion. - What is the relation between the IOO and OOI slider? Change the example slider to 4, and click SETUP EXAMPLE. Click GO and experiment with the IOO slider, running each configuration a couple of times: - As you increase IOO, what transition do you see in the structures formed by the cellular automata? - - Why do you think this transition, or "phase change," happens? - Once you get to 100%, notice that the triangles aren't very symmetric. - - Which slider should you move accordingly in order to make the triangles look more symmetric? - Now try moving both sliders together in order to find the point at which the cellular automaton makes its phase transition. Change the example slider to 5, and click SETUP EXAMPLE Experiment with the OOI and IOO sliders together. - What differences do you notice between the this example and the previous one? - Does either cellular automaton have lower phase transition point with respect to the OOI and IOO sliders? - - If so, what accounts for this difference? EXTENDING THE MODEL ------------------- Often times one might want to change multiple sliders in parallel, while leaving other sliders unchanged. Try automating this process by creating additional switches and sliders. Can you measure the entropy more accurately by using subsequences greater than 4? There are many other ways to measure order in a system besides entropy, can you think of any? Can you make a stochastic cellular automata with more neighbors? For example, the cellular automata might have two neighbors on each side. Try making a two-dimensional stochastic cellular automaton. The neighborhood could be the eight cells around it, or just the cardinal cells (the cells to the right, left, above, and below). NETLOGO FEATURES ---------------- The plot-entropy procedure makes extensive use of the MAP and FILTER primitives. First, MAP is used to convert a list containing the number of occurrences of each pattern of ON? values to a list of probabilities of each pattern occurring. This is done by dividing each item in the first list by the total number of possible patterns. Since both entropy calculations involve the use of a logarithm, FILTER is used to remove all elements in the list that are equal to 0 so that no errors occur. For calculating the topological entropy, MAP is used to change all the remaining elements in the probability list to 1. When calculating the metric entropy, MAP is used to multiply each element in the probability list by its logarithm. Using MAP and FILTER allows these complex calculations to be done in a clean, compact manner. RELATED MODELS -------------- CA 1D Elementary - a widely studied deterministic equivalent to this model CA 1D Totalistic - a three color 1D cellular automata Percolation (in Earth Science) - a model demonstrating the percolation of an oil spill using probabilistic rules similar to this model Turbulence (in Chemistry & Physics) - a continuous cellular automata that exhibits phase change behavior similar to this model Ising (in Chemistry & Physics) - a microscopic view of a magnetic field which undergoes phase changes with respect to temperature Diffusion Limited Aggregation (in Chemistry & Physics) - a growth model demonstrating how the accumulation of randomly placed particles can lead to complex structures found throughout nature CREDITS AND REFERENCES ---------------------- Chate, H. & Manneville, P. (1990). Criticality in cellular automata. Physica D (45), 122-135. Li, W., Packard, N., & Langton, C. (1990). Transition Phenomena in Cellular Automata Rule Space. Physica D (45), 77-94. Wolfram, S. (1983). Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. (55), 601. Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media, Inc. Thanks to Ethan Bakshy for his work on this model. To refer to this model in academic publications, please use: Wilensky, U. (2003). NetLogo CA Stochastic model. http://ccl.northwestern.edu/netlogo/models/CAStochastic. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. In other publications, please use: Copyright 2003 by Uri Wilensky. All rights reserved. See http://ccl.northwestern.edu/netlogo/models/CAStochastic for terms of use. @#$#@#$#@ default true 0 Polygon -7566196 true true 150 5 40 250 150 205 260 250 ant true 0 Polygon -7566196 true true 136 61 129 46 144 30 119 45 124 60 114 82 97 37 132 10 93 36 111 84 127 105 172 105 189 84 208 35 171 11 202 35 204 37 186 82 177 60 180 44 159 32 170 44 165 60 Polygon -7566196 true true 150 95 135 103 139 117 125 149 137 180 135 196 150 204 166 195 161 180 174 150 158 116 164 102 Polygon -7566196 true true 149 186 128 197 114 232 134 270 149 282 166 270 185 232 171 195 149 186 149 186 Polygon -7566196 true true 225 66 230 107 159 122 161 127 234 111 236 106 Polygon -7566196 true true 78 58 99 116 139 123 137 128 95 119 Polygon -7566196 true true 48 103 90 147 129 147 130 151 86 151 Polygon -7566196 true true 65 224 92 171 134 160 135 164 95 175 Polygon -7566196 true true 235 222 210 170 163 162 161 166 208 174 Polygon -7566196 true true 249 107 211 147 168 147 168 150 213 150 arrow true 0 Polygon -7566196 true true 150 0 0 150 105 150 105 293 195 293 195 150 300 150 bee true 0 Polygon -256 true false 152 149 77 163 67 195 67 211 74 234 85 252 100 264 116 276 134 286 151 300 167 285 182 278 206 260 220 242 226 218 226 195 222 166 Polygon -16777216 true false 150 149 128 151 114 151 98 145 80 122 80 103 81 83 95 67 117 58 141 54 151 53 177 55 195 66 207 82 211 94 211 116 204 139 189 149 171 152 Polygon -7566196 true true 151 54 119 59 96 60 81 50 78 39 87 25 103 18 115 23 121 13 150 1 180 14 189 23 197 17 210 19 222 30 222 44 212 57 192 58 Polygon -16777216 true false 70 185 74 171 223 172 224 186 Polygon -16777216 true false 67 211 71 226 224 226 225 211 67 211 Polygon -16777216 true false 91 257 106 269 195 269 211 255 Line -1 false 144 100 70 87 Line -1 false 70 87 45 87 Line -1 false 45 86 26 97 Line -1 false 26 96 22 115 Line -1 false 22 115 25 130 Line -1 false 26 131 37 141 Line -1 false 37 141 55 144 Line -1 false 55 143 143 101 Line -1 false 141 100 227 138 Line -1 false 227 138 241 137 Line -1 false 241 137 249 129 Line -1 false 249 129 254 110 Line -1 false 253 108 248 97 Line -1 false 249 95 235 82 Line -1 false 235 82 144 100 bird1 false 0 Polygon -7566196 true true 2 6 2 39 270 298 297 298 299 271 187 160 279 75 276 22 100 67 31 0 bird2 false 0 Polygon -7566196 true true 2 4 33 4 298 270 298 298 272 298 155 184 117 289 61 295 61 105 0 43 boat1 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 158 33 230 157 182 150 169 151 157 156 Polygon -7566196 true true 149 55 88 143 103 139 111 136 117 139 126 145 130 147 139 147 146 146 149 55 boat2 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 157 54 175 79 174 96 185 102 178 112 194 124 196 131 190 139 192 146 211 151 216 154 157 154 Polygon -7566196 true true 150 74 146 91 139 99 143 114 141 123 137 126 131 129 132 139 142 136 126 142 119 147 148 147 boat3 false 0 Polygon -1 true false 63 162 90 207 223 207 290 162 Rectangle -6524078 true false 150 32 157 162 Polygon -16776961 true false 150 34 131 49 145 47 147 48 149 49 Polygon -7566196 true true 158 37 172 45 188 59 202 79 217 109 220 130 218 147 204 156 158 156 161 142 170 123 170 102 169 88 165 62 Polygon -7566196 true true 149 66 142 78 139 96 141 111 146 139 148 147 110 147 113 131 118 106 126 71 box true 0 Polygon -7566196 true true 45 255 255 255 255 45 45 45 butterfly1 true 0 Polygon -16777216 true false 151 76 138 91 138 284 150 296 162 286 162 91 Polygon -7566196 true true 164 106 184 79 205 61 236 48 259 53 279 86 287 119 289 158 278 177 256 182 164 181 Polygon -7566196 true true 136 110 119 82 110 71 85 61 59 48 36 56 17 88 6 115 2 147 15 178 134 178 Polygon -7566196 true true 46 181 28 227 50 255 77 273 112 283 135 274 135 180 Polygon -7566196 true true 165 185 254 184 272 224 255 251 236 267 191 283 164 276 Line -7566196 true 167 47 159 82 Line -7566196 true 136 47 145 81 Circle -7566196 true true 165 45 8 Circle -7566196 true true 134 45 6 Circle -7566196 true true 133 44 7 Circle -7566196 true true 133 43 8 circle false 0 Circle -7566196 true true 35 35 230 person false 0 Circle -7566196 true true 155 20 63 Rectangle -7566196 true true 158 79 217 164 Polygon -7566196 true true 158 81 110 129 131 143 158 109 165 110 Polygon -7566196 true true 216 83 267 123 248 143 215 107 Polygon -7566196 true true 167 163 145 234 183 234 183 163 Polygon -7566196 true true 195 163 195 233 227 233 206 159 sheep false 15 Rectangle -1 true true 90 75 270 225 Circle -1 true true 15 75 150 Rectangle -16777216 true false 81 225 134 286 Rectangle -16777216 true false 180 225 238 285 Circle -16777216 true false 1 88 92 spacecraft true 0 Polygon -7566196 true true 150 0 180 135 255 255 225 240 150 180 75 240 45 255 120 135 thin-arrow true 0 Polygon -7566196 true true 150 0 0 150 120 150 120 293 180 293 180 150 300 150 truck-down false 0 Polygon -7566196 true true 225 30 225 270 120 270 105 210 60 180 45 30 105 60 105 30 Polygon -8716033 true false 195 75 195 120 240 120 240 75 Polygon -8716033 true false 195 225 195 180 240 180 240 225 truck-left false 0 Polygon -7566196 true true 120 135 225 135 225 210 75 210 75 165 105 165 Polygon -8716033 true false 90 210 105 225 120 210 Polygon -8716033 true false 180 210 195 225 210 210 truck-right false 0 Polygon -7566196 true true 180 135 75 135 75 210 225 210 225 165 195 165 Polygon -8716033 true false 210 210 195 225 180 210 Polygon -8716033 true false 120 210 105 225 90 210 turtle true 0 Polygon -7566196 true true 138 75 162 75 165 105 225 105 225 142 195 135 195 187 225 195 225 225 195 217 195 202 105 202 105 217 75 225 75 195 105 187 105 135 75 142 75 105 135 105 wolf false 0 Rectangle -7566196 true true 15 105 105 165 Rectangle -7566196 true true 45 90 105 105 Polygon -7566196 true true 60 90 83 44 104 90 Polygon -16777216 true false 67 90 82 59 97 89 Rectangle -1 true false 48 93 59 105 Rectangle -16777216 true false 51 96 55 101 Rectangle -16777216 true false 0 121 15 135 Rectangle -16777216 true false 15 136 60 151 Polygon -1 true false 15 136 23 149 31 136 Polygon -1 true false 30 151 37 136 43 151 Rectangle -7566196 true true 105 120 263 195 Rectangle -7566196 true true 108 195 259 201 Rectangle -7566196 true true 114 201 252 210 Rectangle -7566196 true true 120 210 243 214 Rectangle -7566196 true true 115 114 255 120 Rectangle -7566196 true true 128 108 248 114 Rectangle -7566196 true true 150 105 225 108 Rectangle -7566196 true true 132 214 155 270 Rectangle -7566196 true true 110 260 132 270 Rectangle -7566196 true true 210 214 232 270 Rectangle -7566196 true true 189 260 210 270 Line -7566196 true 263 127 281 155 Line -7566196 true 281 155 281 192 wolf-left false 3 Polygon -6524078 true true 117 97 91 74 66 74 60 85 36 85 38 92 44 97 62 97 81 117 84 134 92 147 109 152 136 144 174 144 174 103 143 103 134 97 Polygon -6524078 true true 87 80 79 55 76 79 Polygon -6524078 true true 81 75 70 58 73 82 Polygon -6524078 true true 99 131 76 152 76 163 96 182 104 182 109 173 102 167 99 173 87 159 104 140 Polygon -6524078 true true 107 138 107 186 98 190 99 196 112 196 115 190 Polygon -6524078 true true 116 140 114 189 105 137 Rectangle -6524078 true true 109 150 114 192 Rectangle -6524078 true true 111 143 116 191 Polygon -6524078 true true 168 106 184 98 205 98 218 115 218 137 186 164 196 176 195 194 178 195 178 183 188 183 169 164 173 144 Polygon -6524078 true true 207 140 200 163 206 175 207 192 193 189 192 177 198 176 185 150 Polygon -6524078 true true 214 134 203 168 192 148 Polygon -6524078 true true 204 151 203 176 193 148 Polygon -6524078 true true 207 103 221 98 236 101 243 115 243 128 256 142 239 143 233 133 225 115 214 114 wolf-right false 3 Polygon -6524078 true true 170 127 200 93 231 93 237 103 262 103 261 113 253 119 231 119 215 143 213 160 208 173 189 187 169 190 154 190 126 180 106 171 72 171 73 126 122 126 144 123 159 123 Polygon -6524078 true true 201 99 214 69 215 99 Polygon -6524078 true true 207 98 223 71 220 101 Polygon -6524078 true true 184 172 189 234 203 238 203 246 187 247 180 239 171 180 Polygon -6524078 true true 197 174 204 220 218 224 219 234 201 232 195 225 179 179 Polygon -6524078 true true 78 167 95 187 95 208 79 220 92 234 98 235 100 249 81 246 76 241 61 212 65 195 52 170 45 150 44 128 55 121 69 121 81 135 Polygon -6524078 true true 48 143 58 141 Polygon -6524078 true true 46 136 68 137 Polygon -6524078 true true 45 129 35 142 37 159 53 192 47 210 62 238 80 237 Line -16777216 false 74 237 59 213 Line -16777216 false 59 213 59 212 Line -16777216 false 58 211 67 192 Polygon -6524078 true true 38 138 66 149 Polygon -6524078 true true 46 128 33 120 21 118 11 123 3 138 5 160 13 178 9 192 0 199 20 196 25 179 24 161 25 148 45 140 Polygon -6524078 true true 67 122 96 126 63 144 @#$#@#$#@ NetLogo 2.0beta5 @#$#@#$#@ set example 4 setup-example repeat screen-size-y - 1 [ go ] @#$#@#$#@ @#$#@#$#@