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c Long term energy models are reviewed with a focus on UK domestic stock models.
c Existing models are found weak in modelling green technology buying behaviour.
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c A prototype ABM is developed and testing indicates a lot of potential.
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a b s t r a c t

The UK has a target for an 80% reduction in CO2 emissions by 2050 from a 1990 base. Domestic energy use

accounts for around 30% of total emissions. This paper presents a comprehensive review of existing

models and modelling techniques and indicates how they might be improved by considering individual

buying behaviour. Macro (top-down) and micro (bottom-up) models have been reviewed and analysed.

It is found that bottom-up models can project technology diffusion due to their higher resolution.

The weakness of existing bottom-up models at capturing individual green technology buying behaviour

has been identified. Consequently, Markov chains, neural networks and agent-based modelling are

proposed as possible methods to incorporate buying behaviour within a domestic energy forecast model.

Among the three methods, agent-based models are found to be the most promising, although a successful

agent approach requires large amounts of input data. A prototype agent-based model has been developed

and tested, which demonstrates the feasibility of an agent approach. This model shows that an agent-

based approach is promising as a means to predict the effectiveness of various policy measures.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Energy efficiency first came on to the political agenda in the
1970s as a response to the oil crises. Since then it has been
gradually gaining in importance. Today, the two main concerns
are energy security – ensuring there will be continuous and
sufficient supplies of energy; and climate change – concerns over
emissions from energy generation (DECC, 2011a). In the UK, the
main focus regarding emissions is on CO2 and in the 2008 Climate
Change Act the UK Government has committed the country to an
80% reduction target by 2050 from a 1990 base level. Approxi-
mately 28% of energy use is in the home (DECC, 2011b). This can
be further broken down to some 56% for space heating, 26% hot
water, 15% lighting and appliances and 3% for cooking (DECC,
2011c). Therefore, if an 80% overall target is to be met, significant
reductions will be required in the domestic sector. Modelling can be
ll rights reserved.
used to help in planning a suitable pathway to 2050 in order to
meet the carbon reduction target; for instance, by considering the
impact of projected population changes, or to predict the effective-
ness of different policy measures. There are two broad types of
models: top-down models that are macro-economics based and
typically operate on a whole economy basis; and bottom-up models
operating at the micro-level and usually sector specific, e.g. domes-
tic dwellings, transport, industry, etc. This paper therefore provides
a comprehensive review of existing models that include domestic
dwellings, and their various purposes, together with a discussion of
the respective strengths and weaknesses of their different methods.
To conclude, recommendations are made for new techniques that
could be used to improve on existing methods.
2. Types and methods of modelling

As mentioned in the previous section, there are different types
of models that use different methods and have different purposes;
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Fig. 1. Top-down and bottom-up model types.
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nevertheless there are two broad categories: top-down, and
bottom-up models, their constituent families are shown in Fig. 1.
The following subsections then discuss each model type in turn.

2.1. Top-down models

Top-down models, as their name suggests, operate at a high
level, using macro-level aggregated data, and do not consider the
individual and the detail to which the individual is exposed. There
are two broad categories of top-down model, whole economy,
and sector specific.

2.1.1. Whole economy top-down models

Whole economy models typically operate at the national level,
relying on aggregated data that is usually econometric, e.g. GDP,
economic growth and inflation rates, population projections, etc.
Since these models are looking at the overall picture they are used
for large scale and long term planning, typically for energy supply
and security. A whole economy model can be used to predict
future energy demand, which then allows for planning of the
generating mix that is required to satisfy the predicted demand.
Therefore, for this sort of usage, high levels of individual data are
not useful and disaggregated data is consequently ignored in
favour of the macro-level data.

As an example, in Ireland (FitzGerald et al., 2002) an energy
demand model has been developed. This was a whole economy
top-down model. They found that in the period from 1960 to
2001 electricity demand increased at a rate of 5% pa and non-
electricity at 1.2% pa and that the majority of changes to CO2

emissions were due to changes in the generation mix. Their top-
down model essentially considered only the effect of cost on
demand – to this end they found that electricity has a very low
price elasticity – i.e. large price increases are required to achieve a
small reduction in demand. It is possible to suggest two main
reasons for this—firstly, except where electricity is being used for
heating, there is limited opportunity for substitution, secondly, it
would suggest that the price is not yet high enough that excessive
use is financially painful and therefore much higher prices would
be required to affect behaviour in reducing usage and encoura-
ging adoption of energy efficiency measures.

2.1.2. Sector specific top-down models

Due to their set-up, whole economy top-down models tend to
be short on specific details, which can be addressed to some
extent with sector specific top-down models.
A domestic sector top-down model will typically predict total
energy demand and will track housing demolition and construc-
tion rates and similar high level data without a detailed analysis
at the individual dwelling level.

The ADEPT (Summerfield et al., 2010) model provides a
suitable example of the way a domestic sector top-down model
can operate. In developing this model it is argued that an analysis
of the overall energy demand does not require an understanding
of the mechanisms driving individual changes, and instead aims
to rely on the minimum possible level of data to provide an
energy demand model. Therefore the model concentrates on the
delivered energy of the average household, Qd. The main data
source used for the model is the Digest of UK Energy Statistics
(DUKES) (DECC, 2011d). DUKES provides total domestic sector
energy use (from which average energy use per household can
readily be derived) together with temperature data. Combining
this with price, ADEPT was defined as a simple regression
equation as follows:

Qd ¼ B0þB1yeþB2Pq ð1Þ

Where B0,1,2 are the regression coefficients, ye is the heating
season’s average external temperature and Pq is the energy price
index (baseline set in 2005 where Pq¼1). This model therefore
predicts the average energy demand based solely on energy cost
and external winter temperature. As would be expected ye and Pq

are negatively correlated with Q d – i.e. as the external tempera-
ture increases energy demand decreases, and as energy prices
increase energy demand decreases.

Therefore, such a model can be used for overall annual demand
predictions; however, it is not appropriate for short term overall
predictions, e.g. for continuous grid management. Nor does it
consider the underlying changes that will take place to achieve
the reductions predicted. So, depending on the aim of the model
this is a significant short-coming of top-down models in that they
can make projections of overall demand and predict future
demand reduction without any consideration of the technologies
that might be used for those reductions.

2.2. Bottom-up models

There are essentially two bottom-up approaches, statistical or
physical. Statistical models rely on a sample of dwellings and
typically look for relationships between appliance use and energy
demand, typically via some form of regression with common
regression factors such as appliance ownership and weather data
(Swan and Ugursal, 2008). The predicted response for the sample
is then extrapolated upwards for the wider population under
consideration, whether that be local, regional or national. There-
fore such models tend to be restricted to considering the rela-
tively short term as they concentrate on day to day usage as
opposed to long term stock transformation.

By way of contrast, physical models consider the physical
characteristics of the dwelling stock. Using some form of thermo-
dynamic assessment or heat balance, the energy use of an
individual dwelling can be predicted, then by scaling up a suitable
representative sample the entire dwelling stock can be modelled.
This is therefore an explicit consideration of long term changes to
the dwelling stock, which is consequently ideal for providing long
term modelling and predicting the effect of different uptake rates
for the various energy efficiency technologies available.

Physically based models rely on modelling some representative
sample (either real or simulated) of the housing stock, which can
then be aggregated to provide a simplified approximation to the
entire dwelling stock being considered. Therefore, before considering
the various physically based models, it is first necessary to consider
the methods used for modelling an individual dwelling.
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2.2.1. Individual dwelling models

In the domestic sector individual dwelling models will typi-
cally be physically based and their primary use will be for
regulatory purposes—in the UK and the EU this will principally
be to satisfy the requirements of the Energy Performance of
Buildings Directive (EPBD) (EU, 2002). In the UK there are two
versions for regulatory purposes for dwellings, the Standard
Assessment Procedure (SAP) (BRE, 2011a) for new dwellings and
the Reduced data Standard Assessment Procedure (RdSAP) for
existing dwellings. RdSAP is a special version of SAP that makes
assumptions, typically based on the age of the dwelling, for
certain details that cannot easily be measured for an existing
dwelling (e.g. wall U-values). SAP is therefore primarily designed
as a regulatory assessment tool, as opposed to a prediction model.
The full version of SAP is used for new dwellings where more
detail will be available from the plans for the dwelling. These are
the statutorily approved methods for carrying out a domestic
energy assessment, and a SAP-based certificate, providing an
efficiency rating on a scale from 1 (poor) to 100 (excellent), is
required whenever a dwelling is constructed, sold or let. SAP is a
physical based individual dwelling model largely based on the
older BRE Domestic Energy Model (BREDEM) (Anderson et al.,
1985, 2002). By considering the fabric of the dwelling, fixed
heating and cooling appliances, and renewable energy technolo-
gies, SAP (and RdSAP) estimate the energy demand from space
heating and cooling, hot water and lighting. But it excludes
appliances and cooking (although it does include heat gains from
these energy uses). Therefore SAP analyses over 80% of current
domestic energy use; however, as the thermal properties of
dwellings are improved and the efficiency of heating appliances
improves and more renewable technologies are installed it can be
anticipated that this proportion will reduce therefore making
appliance use more significant. An important feature of SAP is
that it makes standard assumptions as to usage for its calculations
and makes no allowance for different types of occupants. For
instance it assumes that living rooms will be heated to 21 1C for
9 h a day during the week and for 16 h a day at the weekend, with
other rooms heated to 18 1C at the same times. These sorts of
assumptions therefore make no allowance for variations in
individual use. Whilst this decision may reduce the true accuracy
of the model it potentially makes it more useful for comparison
purposes as it allows an easy comparison of the energy demand of
two different dwellings. Indeed this is one of the main aims of the
European Energy Performance of Buildings Directive (EPBD)
which requires an energy assessment on the construction, sale
or lease of a property, with the intention that the assessment
could be used as extra information for a prospective owner or
tenant when deciding which dwelling to take.

In a similar vein to SAP, which is primarily for regulatory
purposes, there are individual dwelling models intended for use
as design tools. One of the main such tools is the Passive House
Planning Package (PHPP) (Passive House Institute, 2007). Passiv-
Haus was originally a German standard for recognising energy
efficient new buildings and is now being exported to other
countries, and also now has an option for dwelling refurbishment.
PHPP is the UK tool for demonstrating compliance. In order for a
dwelling to achieve the PassivHaus standard the modelling tool
needs to predict energy demand below certain limits, e.g. specific
heating demand r15 kWh/m2 yr and specific primary energy
demand r120 kWh/m2 yr. The primary energy demand includes
appliances and so therefore PassivHaus makes an attempt at
including appliance use, although this is primarily to ensure there
is not overheating due to incidental gains from inefficient appli-
ances, as opposed to a detailed modelling of appliance use. There
are other tools for analysing dwellings that attempt to be more
comprehensive, e.g. BREEAM—the BRE Environmental Assessment
Method (BRE, 2011b), which, as well as energy use, considers other
environmental impacts, e.g. water, waste, transport, etc. However,
the energy component is typically SAP based.

Therefore there are a range of individual dwelling models, but
they are primarily concerned with the fabric and heating and
cooling systems, and do not provide detailed analysis of varying
occupant numbers and behaviour. As can be seen, they have been
primarily created for use in the design or regulatory processes, and
are therefore predominantly assessment tools rather than predic-
tive models, but as such can provide a useful under-pinning for
stock-based models. These individual models tend to use standar-
dised occupancy patterns that may not exactly match any indivi-
dual household, but aim to be similar to a theoretical ‘average’
family, and therefore, if aggregated across the entire dwelling stock,
should provide a reasonable estimate of total emissions.

2.2.2. Physical stock-based bottom-up modelling

Physically based models (also known as engineering models)
operate by preparing a sample set of dwellings, applying changes
to those dwellings and then calculating the effect of those changes.
A number of these models have been developed for both the UK and
other countries, a representative sample of which is discussed below.

2.2.3. Johnston

Johnston’s model (2003) serves as a good introduction to
stock-based bottom-up modelling in the domestic energy sector.
As a stock-based bottom-up model it relies on having different
types of dwelling in the model to represent the real world
housing stock. In this case, the stock is disaggregated into just
two types, based on construction date—pre-1996 and post-1996;
the two types are then intended to be representative of the
overall stock. The emissions of the individual dwelling types are
calculated using an adapted form of BREDEM.

From this base, assumptions are made about the uptake of new
technologies, population trends and changes in energy usage. By
varying the input assumptions different scenarios can be analysed
so that different future pathways can be explored.

Johnston produced three main scenarios to represent three
different approaches to future energy demand, with the model
providing projections from a start date of 1996 to an end date of
2050. The first scenario is Business as Usual (BAU)—the aim of
this scenario is to simply continue the current trends to project
the position in 2050 without any further government interven-
tion. The BAU scenario therefore acts as a base point against
which other scenarios can be measured, this scenario predicted a
33% reduction in CO2 by 2050 from its 1996 starting point. The
two other scenarios were Demand and Integrated. The Demand
scenario focussed on demand reduction and predicted a 58%
reduction in emissions, whilst the Integrated scenario added
improvements to the grid electricity supply to the demand side
changes to achieve a 74% reduction.

Whilst this simple model demonstrates the basic working of a
bottom-up model, with the use of scenarios to consider various
different situations, it has obvious limitations—in particular as it
only uses two dwelling types the resolution of detail available is
significantly curtailed.

2.2.4. BREHOMES

In contrast to Johnston’s model, the BREHOMES (Shorrock
and Dunster, 1997) model was a highly disaggregated model,
which used an annual survey of around 18,000 homes to build
up its stock profile into 1000 dwelling types. This greater resolu-
tion of detail in the housing stock allows for much finer analysis
of changes and the installation of new technologies. As with
Johnston’s model the emissions of the individual dwelling types
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are calculated using a form of BREDEM. In the same way as
Johnston’s model, BREHOMES produced a default scenario, Refer-
ence, as a base point against which to compare other scenarios,
and the main alternative scenario was Efficiency. This was an
earlier model than Johnston’s and as such the scenarios were not
looking for particularly high savings nor over the very long term,
instead the Efficiency scenario predicted a 13% reduction by 2020
from a 1995 base.1

This illustrates a potential problem with models. As they are
projecting into the future it can be difficult to gauge their likely
accuracy, and one potential method of comparing different
models is to compare their outputs. However, it is difficult to do
this accurately because different models tend to start from
different positions, and analyse different scenarios. In addition,
as many models are either difficult to use, proprietary, or do not
publish all their assumptions it is frequently impossible to run the
same scenario in two different models for comparison purposes.
One of these problems – the end date – is usually addressed in
newer models since many targets, both nationally and interna-
tionally, focus on 2050, so most newer models are typically
aiming at the 2050 date, although they can often be used for in
between dates too, usually 2020 and 2030, for which there are
various subsidiary targets.

2.2.5. UKDCM2

The UK Domestic Carbon Model (UKDCM2) (Hinnells et al.,
2007) is a newer model, with 2050 as its main target, and this is
again a large scale model and is further disaggregated with some
20,000 dwelling types available. Again, these dwellings have their
emissions calculated using BREDEM. UKDCM2 was used to
produce the Home Truths report (Boardman, 2007) which ana-
lysed a number of future scenario pathways aiming for an 80%
reduction by 2050. With the level of detail included in UKDCM2 it
was possible to follow the installation rates of different technol-
ogies and the impact of different policy measures on the installa-
tion rates. As such it can be seen that a detailed stock-based
model can be used for policy analysis. However, the policies
analysed with UKDCM2 were largely prescriptive as the model
lacks the requisite behavioural data for analysing policies that do
not mandate a change but might instead alter the economics of a
choice.

This highlights a further shortcoming of traditional bottom-up
modelling; whilst a stock model can be used for analysing the
effectiveness of policies that mandate a change (e.g. a ban on the
sale of non-condensing boilers) they are poor at being able to
model behaviour changing policies (e.g. a technology subsidy) as
that requires further data sets to be able to understand and
simulate the decision making process at the individual level.

2.3. MARKAL

The previous sub-sections concentrated on describe building
sector stock models. There is a wide range of MARKAL (MARKet
ALlocation) models used in many different countries (Zonooz
et al., 2009). The UK implementation of MARKAL has been used
for policy analysis for projections to 2050 (Skea et al., 2010).
MARKAL models are bottom-up, energy service driven and whole
economy. As service driven models they search for a least-cost
optimisation between supply and demand. The residential sector
is therefore modelled as a set of demands, appliances satisfying
those demands, and energy sources driving those appliances
1 Later work with BREHOMES produced scenarios to 2050 and indicated that a

60% carbon dioxide emission reduction was feasible (ShorrockL D., et al., 2005.

Reducing carbon emissions from the UK housing stock. BRE Report BR480.).
(Kannan, 2007a), therefore MARKAL models are less explicit than
the dedicated stock models previously described (Kannan and
Strachan, 2008). In order to try and address this limitation some
inputs are taken from other models; in particular, in the domestic
sector UKDCM is used to enhance the inputs (Anandarajah et al.,
2009). As MARKAL relies on inputs from other models it necessa-
rily imports some of the limitations of those other models, in
particular MARKAL is limited in modelling individual behaviour
(Kannan et al., 2007b). Therefore it demonstrates the possibility of
integrating different models to create a comprehensive model,
but to improve the comprehensive model the constituent parts
need to overcome their respective limitations.

2.4. Model summaries and international models

The previous sub-sections concentrated on describing some
prominent UK-based bottom-up models. As short-comings have
been identified, for completeness it is necessary to provide a brief
summary of models used in other countries; therefore, the
following table details the key characteristics of a more extensive
range of UK models together with a representative sample of non-
UK models (Table 1).

As can be seen from the table, whilst a number of models
attempt to consider household variation in modelling the day to
day energy demand from a dwelling only one, Yucel and Pruyt
(2011) attempt to consider household variation when it comes to
renovation driven improvements to the existing dwelling stock.
There are a number of studies that try to consider the effect of
different household types and behaviour (Yao and Steemers,
2005; Streimikiene and Volochovic, 2011; Yu et al., 2011). How-
ever, such research tends to concentrate on day to day usage and
habitual type behaviour, as opposed to the one off behaviour
when installing insulation or buying energy efficient equipment.
Various pieces of research (e.g. Wilhite and Ling, 1995; Wood and
Newborough, 2003; Abrahamse et al., 2007; Ouyang and Hokao,
2009) suggest that savings from such day to day behavioural
change will only be of the order of 5–10%, thus showing the
importance of physical improvements, and demonstrating a need
to understand the influence of behaviour on the installation rates
of the different technologies available.
3. Types of individuals in the UK housing sector

If the behaviour of individuals is to be modelled it is necessary
to consider the different types of actors in the domestic sector. In
the UK, there are essentially three different types of actors that
are relevant. The first is the traditional owner-occupier: as the
name suggests these people own their home (frequently with the
aid of a mortgage) and live in it, as such they have the greatest
flexibility over what improvements (if any) are carried out to
their homes. The next category is tenants: in the UK most
tenancies since the late 1990s are Assured Shorthold Tenancies,
after an initial term of six months the tenancy can usually be
terminated by the landlord giving two months’ notice, or by the
tenant giving one months’ notice; therefore, tenants have much
less surety of long term occupancy, and will only be able to
request improvements to their home, it will then be up to their
landlord to decide whether to carry out any improvements.
If there are tenants there must be landlords, which is the third
category of actors. The landlord category really needs to be
further split into two sub-categories: the first is the private
landlord—private landlords range from commercial organisations
that have large portfolios of dwellings down to individuals who
may only own a handful of properties and even the so-called
‘accidental’ landlord, who, due to the current economic climate



Table 1
Summary of a representative sample of models.

Model name/authors, country Summary Disadvantages

BREHOMES

(Shorrock and Dunster, 1997), UK

BREDEM based, 1000 dwelling types, weighted stock transformation,

scenario analysis to 2020 (later extended to 2050)

No modelling of buying decision making

Johnston (2003) UK BREDEM based, 2 dwelling types, weighted stock transformation,

scenario analysis to 2050, highest possible saving 82%

Disaggregation too low for analysis

of technology diffusion, no modelling

of buying decision making

UKDCM2 (Hinnells et al., 2007) UK BREDEM based, 20000 potential dwelling types, weighted stock

transformation, scenario analysis to 2050 including 80% reduction

No modelling of buying decision making

DECarb (Natarajan and Levermore, 2007a,

2007b) UK

BREDEM based, 8064 dwelling types per age class with an initial

6 age classes

No modelling of buying decision making

CDEM (Firth et al., 2010) UK BREDEM based, 47 dwelling archetypes as averages of dwelling stock Lack of scenario outputs, no modelling

of buying decision making

DECM (Cheng and Steemers, 2011) UK BREDEM/SAP2005 based, 50 initial dwelling types, allows for regional

analysis, includes an element of social modelling in predicting energy

demand

No modelling of buying decision making

CREEM (Farahbaksh et al., 1998), CREEEM

(Fung et al., 2000), CHREM (Swan et al.,

2011), Canada

Several versions produced. Latest – CHREM: c: 17000 unique house

descriptions. Latest version incorporates artificial neural network (ANN)

to predict demand

Deals with houses only, not flats.

No modelling of buying decision making

Chen et al. (2008), China Statistical sample led collection of energy use and building

characteristic data

Early stages, predictions and policy

implications not yet available

Georgopoulou et al. (2006), Greece Combined residential and commercial buildings 72 categories and 17

reduction measures. Scenarios based on technically feasible and

economically feasible measures

No modelling of buying decision making

Steemers and Yun (2009), USA 3358 dwelling stock—reduced to 2718 for cooling, includes

socio-economic factors when considering heating and appliance use

No modelling of buying decision making

Yucel and Pruyt (2011) Holland 3 dwelling archetypes, 9 household types. Attempts to model typical

buying decisions based on economic viability

Real technologies not used, decision

making purely economic, limited stock

disaggregation

Table 2
Dwelling stock: by tenure United Kingdom 2009 (CLG, 2011a).

Source: CLG, 2011a: ‘‘Dwelling Stock: by tenure United Kingdom 2009, Live tables

on dwelling stock’’ ’’http://www.communities.gov.uk/housing/housingresearch/

housingstatistics/housingstatisticsby/stockincludingvacants/livetables/.

Owner

occupied

Private

tenancy

Registered social

landlord tenancy

Local authority

tenancy

Total

17,991,000 4,231,000 2,531,000 2,356,000 27,109,000

66.4% 15.6% 9.3% 8.7% 100%
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has been forced to let out their own home and become a tenant
elsewhere. The other type of landlord is the social landlord—these
are governmental, or quasi-governmental organisations that will
typically have a portfolio of several thousand dwellings which
they own and manage. Table 2 shows figures for the housing
distribution between these different sectors. As can be seen,
owner occupiers account for two-thirds of dwellings, with gov-
ernmental type landlords providing 18% of housing and the
remainder being provided by private landlords.

The social landlord sector is the easiest for the government to
intervene in, and encourage energy efficiency improvements. In
recent years the prime policy mover for social landlords has been
the Decent Homes standard. This set a target that all social
housing should meet a minimum quality standard (including
thermal performance) by the end of 2010; however, that date
has progressively slipped and it was estimated that 92% of the
social housing stock met the target on date, leaving 305,000 ‘non-
decent’ and a revised 100% target for 2018–2019 (CLG, 2010).
Nevertheless, that is a fairly high compliance rate and suggests
that minimum standards are a significant driver in this sector
without the need for detailed analysis of the individual social
landlord and their individual tenants. The rate of change can be
seen in Table 3

The table shows that there has been improvement in the
private dwelling stock too, but suggests that the private sectors
are essentially about 10 years behind the social sectors. This
therefore demonstrates that the greatest need is for improve-
ments in the owner-occupied sector, which not only has the bulk
of available improvements but also the bulk of the housing stock.

Having identified the owner-occupier sector as potentially the
most fruitful, it is necessary to consider the data that needs to be
compiled to understand the individual household and their
decision making process. Essentially there are two questions that
need to be considered: what triggers the decision making process;
and once that process has been triggered, what are the factors
that influence the final outcome? The answers to those questions
are going to be unique in each situation, therefore a successful
model will need to simulate a number of different responses with
the aim of being representative of the entire population. There-
fore consideration needs to be given to a suitable approach for
incorporating such information into a model.
4. New methodologies

As discussed above, a new method needs to be found to
incorporate individual (in particular home-owner) buying decision
making into traditional bottom-up domestic energy modelling. Lee
and Yao (2010) suggested an agent-based approach to incorporate
this element, but before work progresses on an agent-based model
it is first necessary to consider whether any other methods may be
useful. Three potential methods were identified, as candidate
methods requiring further consideration of their applicability at
the individual level. These three possible ways forward are Markov
chains, artificial neural networks, and, as mentioned above, agent-
based modelling.

4.1. Markov chains

Markov chains describe state transition based on the prob-
ability of moving from one state to another. A traditional Markov
chain has a set of available states and assumes a constant
probability of change from one state to another, a simple example

http://www.communities.gov.uk/housing/housingresearch/housingstatistics/housingstatisticsby/stockincludingvacants/livetables/
http://www.communities.gov.uk/housing/housingresearch/housingstatistics/housingstatisticsby/stockincludingvacants/livetables/


Table 3
SAP energy rating by tenure for England (CLG, 2011b).

Source: CLG, 2011b ‘‘English Housing Survey Stock Report 2009’’ http://www.communities.gov.uk/publications/corporate/statistics/ehs2009stockreport.

Year 1996 2001 2003 2004 2005 2006 2007 2008 2009

Owner occupied 41.1 44.4 45.0 45.6 46.1 46.9 48.1 49.6 51.3

Private landlord 37.9 41.9 44.4 45.7 46.0 46.6 48.1 50.2 51.9

Local authority 45.7 49.6 52.0 53.9 55.3 55.8 56.2 58.0 59.6

Registered social landlord 50.9 56.4 56.7 57.3 58.9 59.3 59.3 60.3 62.4

Average 42.1 45.7 46.6 47.4 48.1 48.7 49.8 51.4 53.1

Fig. 2. Weather Markov chain.

Fig. 3. An artificial neural network (Bhatikar et al., 1999).
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is shown in Fig. 2 with the probability of tomorrow’s weather
based on today’s, assuming only two available weather states—

sun or rain.
As can be seen in this simple example the only information

needed is the current state and the probabilities of changes from
that current state to the available new states (which may include
the current state). Therefore, in a typical Markov chain the state at
time tþ1 is only dependent on the state at time t (Elaydi, 2005).
In addition it can be seen that a Markov chain can return to an
earlier state. When considering householder buying decisions this
level of certainty and independence from historic states is
unlikely to apply; for instance, the probability of the installation
of a new technology can be expected to increase with time
(primarily due to expected rises in fuel bills and reductions in
new technology costs). In addition, a return to previous states
may not be possible, e.g. the probability of the removal of cavity
wall insulation will be virtually zero. In using a Markov chain to
run a simulation the output would be a set of probabilities of
different states, and attempting to apply that at the individual
level would not be intuitive, since it would suggest each house-
hold would install a non-sensible quantity of each technology.
Markov chains have been used in energy modelling (e.g.
Richardson et al., 2008; Widen et al., 2009; Richardson et al.,
2010; Ardakanian et al., 2011) although this has primarily been
short term load modelling, typically based on occupancy patterns.
Therefore, Markov does not look like the right method for
considering one-off buying behaviour in the long term, but is of
use in short term load profiling.

4.2. Neural networks

The second potential method identified is an artificial neural
network (ANN). An ANN has a number of layers of interconnected
neurons, there are two visible layers—the input and output
layers, and at least one hidden layer of perceptrons, as illustrated
in Fig. 3.

In the figure, W1 and W2 refer to the weights applied to the
different connections in the network. Neural networks typically
run by being given an initial set of training data, which the
computer uses to determine the most likely output for each input.
During the training process the weights applied to the different
connections inside the network are progressively altered with the
aim of providing as close a match to the training data as possible.
Once a network has been established it can receive some valida-
tion by inputting further data where the outcomes are known and
in that way some indication can be achieved of the likely accuracy
of the network when exposed to new data for which the out-
comes are not known (i.e. the situations that the network is being
used to model). In applying this to domestic energy technology
buying decisions it can be seen that the inputs would be the
individual householder’s current state, information about the
technology being considered, and information about external
factors influencing the buying decision (previous experience,
taxation, advertising, disruption, etc.); and the outputs would be
predictions of whether or not an individual would buy the
technology, given their unique set of circumstances. ANNs there-
fore appear to be quite a promising avenue, subject to being able
to obtain sufficient training data for a model. ANNs are already
being used in energy research, one of the earliest was Park et al.
(1991) working on load profiling, which was similar to the
Markov work previously described, following them there have
been many more (e.g. Khotanzad et al., 1997; Pino et al., 2008;
Bakker et al., 2008). As mentioned in Table 1, CHREM (Swan et al.,
2011) uses an ANN in a longer term model, which is a develop-
ment of Aydinalp et al.’s (2002) ANN work, but again, the ANN is
being used for demand modelling, rather than explicitly model-
ling the technology buying decisions. Therefore, even though
ANNs are beginning to be incorporated into long term bottom-
up models they are only being used for a short term element of
such models. There has also been research using ANNs in top-
down research (Ekonomou, 2010; Kankul et al., 2011) which
clearly lacks the detail of the bottom-up models. There is a also
a major limitation with ANNs, in that they operate in a black box
manner such that it is not normally possible to examine and
understand the internal processes in the hidden perceptron layers
of the network (Johannet et al., 2007). It may be the case that the
network has identified some relationship between input and output
data that was not anticipated and that only happens to work for
the training data; indeed, with a complex decision making process

http://www.communities.gov.uk/publications/corporate/statistics/ehs2009stockreport
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where not all real world data will be able to be captured and
quantified there would appear to be a greater chance of a network
identifying some false relationship and relying on that.

4.3. Agent-based modelling (ABM)

Gilbert (2008) describes agent-based modelling as ‘a computa-

tional method that enables a researcher to create, analyze, and

experiment with models composed of agents that interact within an

environment.’ It can be seen that this can be applied to long term
domestic energy stock modelling, whereby households will be the
interacting agents and their environment is the housing stock,
and indeed other households. In the period from now until 2050 it
can be anticipated that most people will move home. This there-
fore adds a spatial dimension to long term domestic stock
modelling, as householders will make decisions on improvements
in more than one dwelling. In an ABM it is possible to include a
spatial element, indeed, Schelling’s seminal segregation model
(1969, 1971), one of the foundations of ABMs, had autonomous
agents which moved around a spatial grid in response to who
their neighbours were. In this model Schelling had two types of
agent and each turn the agents would decide whether they were
‘happy’ where they were based on the mix of neighbouring agent
types. Just by operating this simple rule the model produced
segregation patterns of the two populations that would be
familiar to town planners looking at population distributions
across a city. This is one of the strengths of ABMs, in that by
setting simple rules at the micro-level, macro-level observations
can be made that could not be determined simply by observing
the system as a whole. These (often unexpected) observations are
frequently referred to as emergent properties. Indeed, Grimm and
Railsback (2005) describe ABMs as ‘Models of individual behaviour

that are useful for explaining population level phenomena in specific

context, with contexts being characterized by the biotic and abiotic

environment, sometimes including the individual’s own state.’ There-
fore the aim of a domestic stock ABM will be to predict the
outcomes at the population level (principally finding a pathway
to a 80% CO2 reduction by 2050) by varying the specific contexts
(e.g. changing the taxes and subsidies, altering the rate of
construction, etc.). With an ABM it is not only possible to have
the agents in the model being autonomous, but each can have its
own rule set making them genuinely heterogeneous, and thus
more able to replicate a real world system.
4.3.1. Existing domestic energy related ABMs

Therefore an ABM looks like the most promising route for
producing a long term domestic stock model that considers
buying decisions at the individual household level. There have
been a number of largely exploratory energy or environment
ABMs (e.g. Ma, 2006; Schwarz, 2007; Kashif et al., 2011). This
review has also identified some existing research in the domestic
energy field using ABMs.

Kempener’s (2009) model is designed to analyse the impact of
personal carbon trading (PCT). In order to run the model he laid
down five initial requirements: individuals know the marginal
abatement cost of any reductions and their current emissions;
they can assign economic value to their emitting activities;
through economic value they can compare the relative advan-
tages of not doing an activity and selling their carbon allowance;
there is a large market of buyers and sellers; and finally, price is
determined by the intersection of supply and demand curves.
As can be seen this framework broadly describes a perfect market
and thus provides a simplified virtual world for the model’s
agents to inhabit. Agents in the model were differentiated by
wealth and by attitude: some wanting to maximise profit; some
aiming to maximise holidays; and a third group trying to be as
environmentally friendly as possible. Different mixes of agent types
were used and it was found that even though the agents operated
in a more or less perfect market they still appeared to make their
decisions opportunistically and as a result not all carbon credits
were used, which meant that they did not fully diffuse through the
market, but also meant that emissions were always less than the
cap. This model therefore demonstrated that it was possible to test
whether this one policy would have an effect, although the agents’
rules were set arbitrarily meaning that no real world conclusions
could be made on the basis of this model.

Faber et al. (2010) also produced an interesting agent-based
domestic energy model. In this case the model looked at the
uptake of micro-Combined Heat and Power (mCHP), as an
innovative heating solution, which would need to compete for
market share against an existing installed base of gas fired
condensing boilers. When the model was run S-curves were
produced for diffusion of the new technology, which is the
expected pattern, showing a slow initial take up before wide-
spread adoption amongst the majority of the population, followed
by a tailing off of the adoption rate as saturation is achieved.
Furthermore, by repeated runs with different subsidy levels it was
theoretically possible to search for an optimal cost-effective
solution that would provide a cost efficient subsidy to CO2 savings
ratio. Therefore the model demonstrated that it was possible to
make predictions about the adoption of one new technology
against an installed base of an existing technology. However,
the model was short on disaggregation of different house types;
the savings available – both monetary and carbon – will depend
on the details of the dwelling in which the technology is to be
installed, and without differentiation of dwelling types it would
not be possible to discern real world technology diffusion. To
partially address this issue the model was re-run with an adjusted
dwelling type; in the re-runs the dwellings were more thermally
efficient. As a result of the increased thermal efficiency the boilers
would be used less leading to reduced savings from using mCHP
with the end result that the mCHP did not diffuse successfully
into the market and widescale adoption did not take place. This
adaptation therefore essentially showed that the diffusion of one
technology (insulation) prevented the diffusion of another
(mCHP) and subsequently indicates that such a model needs a
high degree of disaggregation in both the dwelling stock and the
householders if it is going to be able to be a reasonably life-like
model such that its output will be usable.
5. Prototype agent model

Having established the feasibility of an ABM as a potential way
forward to incorporate micro-economic behaviour into a bottom-
up model it becomes necessary to test whether it will be possible
in practice to construct such a model. In order to do this a test
model has been constructed using a mixture of real world data
and assumed data for simplification.

There are several agent platforms and programming languages
available, so before construction of the model could begin a
suitable modelling platform needed to be chosen. Railsback
et al. (2006) provide a useful review of many different program-
ming languages and environments that are suitable for building
ABMs and they recommend NetLogo (Wilensky, 1999) as an ideal
platform for concept testing, as it allows very simple models to be
built quickly, yet is sufficiently flexible to allow further develop-
ment to produce very complex models.

Having chosen a programming environment, the level of detail
in the model had to be specified. One of the problems with any
forecasting type of model is that it is difficult to verify the
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accuracy of its output as the outputs cannot be compared with
real world data, therefore validation is needed. To allow for
validation the starting state of the model was set to approximate
the UK dwelling stock as it was in 1996. This would allow for
comparison with Johnston’s model, a well known existing
model—as previously discussed, which provides outputs for
1996–2050, and would also allow a comparison with real world
data for technology diffusion for the period of the model repre-
senting the past. To create the dwelling stock a semi-detached
house was approximated and then RdSAP was used to calculate
emissions and running costs with varying insulation and technol-
ogy arrangements: cavity wall (CWI) or solid wall insulation
(SWI) (yes or no); loft insulation (yes or no); condensing boiler
(yes or no); solar PV (yes or no), this made a total theoretical stock
of 32 dwelling types. However, the initial state of the model used
only four of those types; out of a total population of 800 houses
100 had CWI and loft insulation, 100 had loft insulation but no
CWI, 350 had neither, and the remaining 250 had uninsulated
solid walls, these proportions approximate to the Domestic
Energy Fact File data for 1996 (Utley and Shorrock, 2008).

The next item required was the trigger points for decision
making. The Energy Saving Trust (EST, 2011 estimates that 22% of
homeowners are considering refurbishment in the next three
years. To provide an approximate simulation of that level of
change, each year in the model 7% of agents were randomly
chosen to move home, and then considered carrying out improve-
ments on their new home. In addition, each dwelling’s boiler was
given a randomly distributed initial age and a randomly distrib-
uted lifetime with an average expected lifetime of 15 years, with
the breakdown triggering a decision making process. An impor-
tant feature to test with the prototype was that different attitudes
of different homeowners could be modelled. To this end the
agents were arbitrarily split into three groups, 12.5% ‘environ-
mentals’ 12.5% ‘economicals’ and the 75% bulk ‘indifferents’. Each
of these three groups had an average acceptable payback period
for a technology—indifferents 3 years; environmentals 6 years;
economicals 9 years. The individual agents in each group were
then given a normalised random acceptable payback period based
around their group average. NetLogo provides a spatial represen-
tation via a grid so that each square has 8 neighbours; this was
used to simulate the effect of homeowners talking to their friends
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and neighbours. Therefore, as part of the decision making process
an agent counts the number of its 8 immediate neighbours with a
technology—the higher that number the greater the adjustment
allowed to the acceptable payback time. The payback periods and
the effect of neighbours were set arbitrarily, as illustrative values
only. The following piece of pseudo-code illustrates the algorithm
running inside the agents for deciding whether or not to adopt a
technology:

Saving¼Current_running_cost – Improved_running_cost
Install_cost¼Technology_cost – Subsidy
Payback_period¼ Install_cost/Saving
Payback_adjustment¼3*Count_neighbour_tech/8
Acceptable_payback¼Present_paybackþPayback_adjustment
If Payback_periodoAcceptable_payback Adopt new tech
As can be seen from the pseudo-code there was also a subsidy

element, the model provided four variable up-front subsidies: for
boilers, wall insulation, loft insulation, and PV. In addition there
was a Feed in Tariff (FIT) subsidy available – FIT provides an extra
income for electricity generation from PV panels – and this was
used to calculate the improved running costs, thus increasing the
annual saving, rather than reducing the installation costs.
6. Results

The initial test was to run the model without any subsidies in
place and examine its output predictions for the year 2050. With
no subsidies in place – Business and Usual (BAU) scenario – 10
runs provided an average CO2 reduction of 32.3% with a standard
deviation of 0.8%. Johnston’s BAU scenario predicts a 33.2% saving
over the same period. Considering the acceptable payback periods
were set arbitrarily this is a very close result, and suggests that
the model is, albeit perhaps coincidentally, producing expected
results in its initial state.

As discussed earlier this can be further checked by comparing
the installation rates of cavity wall insulation and condensing
boilers in the early years of the model. To test whether the uptake
is broadly as expected results from the years 1996–2006 can be
compared with real-world data from the English House Condition
Survey (CLG, 2009), as shown in Fig. 4.
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Table 4
Ten run average CO2 reductions under different policy assumptions for model runs

from 1996–2050.

Scenario BAU Halfmaxsub Maxsub

10 run average CO2 reduction 32.3% 57.6% 63.5%

Standard deviation 0.8% 0.65% 0.85%

T. Lee, R. Yao / Energy Policy 52 (2013) 363–372 371
As can be seen, the general upward trend is observed in the
model, and the majority of the model outputs are reasonably
close to the EHCS figures considering the simplifications and
assumptions made for this test model.

The final test that could be carried out with this prototype was
to check that the addition of subsidies would increase the CO2

savings predicted. In this case, due to the restricted number of
dwelling types and technologies available it is not possible to
compare this test with real world projections or projections from
other models; instead, its prime aim is to check that increased
subsidy levels lead to increased technology adoption. To do this
two scenarios were produced to be added to the BAU scenario.
The first of these – Maxsub – applies arbitrarily set high subsidy
levels to check that adoption rates increase. These subsidy levels
were as follows: an up-front PV subsidy of £4000; an up-front
boiler subsidy of £3000; a generating subsidy for the PV of
50p per kWh; an up front wall insulation subsidy of £5000; and
a loft insulation subsidy of £300. The second scenario – Half-
maxsub – simply halved these subsidy levels. The 10 run average
results are shown in Table 4.

As can be seen, and as expected, when the subsidy levels were
increased the CO2 reductions increased due to the greater uptake
of the available measures (wall and loft insulation, condensing
boilers, and solar photovoltaics), since the householder agents
reacted to the extra incentives available. It can also be seen that
there are cost effectiveness implications for policy makers. Whilst
the Maxsub scenario achieves an extra 31.2% saving over the BAU
scenario, the Halfmaxsub scenario still manages to achieve an
extra 25.3% when the available subsidies were halved. As would
be expected there is a diminishing return from ever increasing
subsidy levels and there is therefore a need for policy makers to
find the appropriate balance between cost and reward.

In the world of this prototype it would be possible to keep
testing different scenarios with different subsidy levels to find the
optimal balance between cost and benefit, and this would facil-
itate the policy maker in reaching their preferred compromise
between the reduction target and the costs of achieving that
target.
7. Recommendations and conclusions

This research has shown that bottom-up modelling is the most
appropriate method for predicting dwelling stock emissions to
2050. However, approximately two-thirds of homes belong to
owner-occupiers and energy efficiency improvements will only
happen when those individuals decide to invest in green tech-
nologies. Therefore models need to be able to incorporate hetero-
geneous individual buying decisions. Agent-based modelling has
been identified as the most promising method to include such
micro-level behaviour, a feasibility study including a prototype
model indicated that this will be possible.

The challenge for future research will be to understand the
individual’s decision making process. There should be two parts
to this: firstly, to determine the trigger points that cause a
decision to be made; secondly to identify the different factors
affecting the decision making process and the weighting that
should be applied to each factor. A number of technologies still
have very small installed numbers – less than 1% of the housing
stock – in those cases the installations will typically have been
from environmentally aware early adopters or from new builds
where the owner-occupier will have had no input in the technol-
ogy buying process. Therefore it will be difficult to predict the
responses of the bulk of the population based on the actions of the
early adopters. This suggests that, initially at least, a substantial
amount of data will need to be collected via simulated buying
experiments, with the obvious caveat that stated preferences will
not be identical to real world decisions. This therefore further
suggests the need for longitudinal studies and calibration against
real world data as it becomes available.

Therefore, if suitable data can be collated, agent-based model-
ling has a lot of promise for the analysis of pathways to 2050 and
considering the cost effectiveness of both individual policies and
packages of policy measures. Scenarios can be constructed with
different sets of policies, e.g. subsidies, taxation, grants, loans, etc.,
and the diffusion rates of different technologies can then be
tracked over the lifetime of the model to find cost effective
pathways to 2050. Therefore a full agent-based model, with a
comprehensive dwelling stock and suitable decision making data,
will be usable by policy makers to simulate the effectiveness of
different sets of policy interventions; this will enable policy
makers to test current policies and compare them with alter-
native options in an effort to maximise emissions reductions,
whilst simultaneously minimising the associated costs. The
detailed information of how to operate this model and compre-
hensive scenario-based case studies relating to the UK energy
policies will be presented in a forthcoming paper.
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